Digitalni repozitorij raziskovalnih organizacij Slovenije

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po

Možnosti:
  Ponastavi


Iskalni niz: "avtor" (Boštjan Brešar) .

1 - 5 / 5
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Graphs with equal Grundy domination and independence number
Gábor Bacsó, Boštjan Brešar, Kirsti Kuenzel, Douglas F. Rall, 2023, izvirni znanstveni članek

Povzetek: The Grundy domination number, ${\gamma_{\rm gr}}(G)$, of a graph $G$ is the maximum length of a sequence $(v_1,v_2,\ldots, v_k)$ of vertices in $G$ such that for every $i\in \{2,\ldots, k\}$, the closed neighborhood $N[v_i]$ contains a vertex that does not belong to any closed neighborhood $N[v_j]$, where $jKljučne besede: Grundy domination, independence number, upper domination number, bipartite graphs
Objavljeno v DiRROS: 09.04.2024; Ogledov: 71; Prenosov: 42
.pdf Celotno besedilo (803,91 KB)
Gradivo ima več datotek! Več...

2.
Injective coloring of graphs revisited
Boštjan Brešar, Babak Samadi, Ismael G. Yero, 2023, izvirni znanstveni članek

Povzetek: An open packing in a graph $G$ is a set $S$ of vertices in $G$ such that no two vertices in $S$ have a common neighbor in $G$. The injective chromatic number $\chi_i(G)$ of $G$ is the smallest number of colors assigned to vertices of ▫$G$▫ such that each color class is an open packing. Alternatively, the injective chromatic number of $G$ is the chromatic number of the two-step graph of $G$, which is the graph with the same vertex set as $G$ in which two vertices are adjacent if they have a common neighbor. The concept of injective coloring has been studied by many authors, while in the present paper we approach it from two novel perspectives, related to open packings and the two-step graph operation. We prove several general bounds on the injective chromatic number expressed in terms of the open packing number. In particular, we prove that $\chi_i(G) \ge \frac{1}{2}\sqrt{\frac{1}{4}+\frac{2m-n}{\rho^{o}}}$ holds for any connected graph $G$ of order $n\ge 2$, size $m$, and the open packing number ${\rho^{o}}$, and characterize the class of graphs attaining the bound. Regarding the well known bound $\chi_i(G)\ge \Delta(G)$, we describe the family of extremal graphs and prove that deciding when the equality holds (even for regular graphs) is NP-complete, solving an open problem from an earlier paper. Next, we consider the chromatic number of the two-step graph of a graph, and compare it with the clique number and the maximum degree of the graph. We present two large families of graphs in which $\chi_i(G)$ equals the cardinality of a largest clique of the two-step graph of $G$. Finally, we consider classes of graphs that admit an injective coloring in which all color classes are maximal open packings. We give characterizations of three subclasses of these graphs among graphs with diameter 2, and find a partial characterization of hypercubes with this property.
Ključne besede: two-step graph of a graph, injective coloring, open packing, hypercubes
Objavljeno v DiRROS: 09.04.2024; Ogledov: 65; Prenosov: 51
.pdf Celotno besedilo (460,72 KB)
Gradivo ima več datotek! Več...

3.
Orientable domination in product-like graphs
Sarah Anderson, Boštjan Brešar, Sandi Klavžar, Kirsti Kuenzel, Douglas F. Rall, 2023, izvirni znanstveni članek

Povzetek: The orientable domination number, ${\rm DOM}(G)$, of a graph $G$ is the largest domination number over all orientations of $G$. In this paper, ${\rm DOM}$ is studied on different product graphs and related graph operations. The orientable domination number of arbitrary corona products is determined, while sharp lower and upper bounds are proved for Cartesian and lexicographic products. A result of Chartrand et al. from 1996 is extended by establishing the values of ${\rm DOM}(K_{n_1,n_2,n_3})$ for arbitrary positive integers $n_1,n_2$ and $n_3$. While considering the orientable domination number of lexicographic product graphs, we answer in the negative a question concerning domination and packing numbers in acyclic digraphs posed in [Domination in digraphs and their direct and Cartesian products, J. Graph Theory 99 (2022) 359-377].
Ključne besede: digraph, domination, orientable domination number, packing, graph product, corona graph
Objavljeno v DiRROS: 20.03.2024; Ogledov: 109; Prenosov: 52
.pdf Celotno besedilo (366,61 KB)
Gradivo ima več datotek! Več...

4.
Packings in bipartite prisms and hypercubes
Boštjan Brešar, Sandi Klavžar, Douglas F. Rall, 2024, izvirni znanstveni članek

Povzetek: The $2$-packing number $\rho_2(G)$ of a graph $G$ is the cardinality of a largest $2$-packing of $G$ and the open packing number $\rho^{\rm o}(G)$ is the cardinality of a largest open packing of $G$, where an open packing (resp. $2$-packing) is a set of vertices in $G$ no two (closed) neighborhoods of which intersect. It is proved that if $G$ is bipartite, then $\rho^{\rm o}(G\Box K_2) = 2\rho_2(G)$. For hypercubes, the lower bounds $\rho_2(Q_n) \ge 2^{n - \lfloor \log n\rfloor -1}$ and $\rho^{\rm o}(Q_n) \ge 2^{n - \lfloor \log (n-1)\rfloor -1}$ are established. These findings are applied to injective colorings of hypercubes. In particular, it is demonstrated that $Q_9$ is the smallest hypercube which is not perfect injectively colorable. It is also proved that $\gamma_t(Q_{2^k}\times H) = 2^{2^k-k}\gamma_t(H)$, where $H$ is an arbitrary graph with no isolated vertices.
Ključne besede: 2-packing number, open packing number, bipartite prism, hypercube, injective coloring, total domination number
Objavljeno v DiRROS: 19.02.2024; Ogledov: 181; Prenosov: 67
.pdf Celotno besedilo (231,57 KB)
Gradivo ima več datotek! Več...

5.
Lower (total) mutual-visibility number in graphs
Boštjan Brešar, Ismael G. Yero, 2024, izvirni znanstveni članek

Povzetek: Given a graph $G$, a set $X$ of vertices in $G$ satisfying that between every two vertices in $X$ (respectively, in $G$) there is a shortest path whose internal vertices are not in $X$ is a mutual-visibility (respectively, total mutual-visibility) set in $G$. The cardinality of a largest (total) mutual-visibility set in $G$ is known under the name (total) mutual-visibility number, and has been studied in several recent works. In this paper, we propose two lower variants of these concepts, defined as the smallest possible cardinality among all maximal (total) mutual-visibility sets in $G$, and denote them by $\mu^{-}(G)$ and $\mu_t^{-}(G)$, respectively. While the total mutual-visibility number is never larger than the mutual-visibility number in a graph $G$, we prove that both differences $\mu^{-}(G)-\mu_t^{-}(G)$ and $\mu_t^{-}(G)-\mu^{-}(G)$ can be arbitrarily large. We characterize graphs $G$ with some small values of $\mu^{-}(G)$ and $\mu_t^{-}(G)$, and prove a useful tool called the Neighborhood Lemma, which enables us to find upper bounds on the lower mutual-visibility number in several classes of graphs. We compare the lower mutual-visibility number with the lower general position number, and find a close relationship with the Bollobás-Wessel theorem when this number is considered in Cartesian products of complete graphs. Finally, we also prove the NP-completeness of the decision problem related to $\mu_t^{-}(G)$.
Ključne besede: mutual-visibility set, mutual-visibility number, total mutual-visibility set, computational complexity
Objavljeno v DiRROS: 19.02.2024; Ogledov: 143; Prenosov: 64
.pdf Celotno besedilo (567,18 KB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.19 sek.
Na vrh