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a b s t r a c t

The Grundy domination number, γgr(G), of a graph G is the maximum length of
a sequence (v1, v2, . . . , vk) of vertices in G such that for every i ∈ {2, . . . , k}, the
closed neighborhood N [vi] contains a vertex that does not belong to any closed
neighborhood N [vj ], where j < i. It is well known that the Grundy domination
number of any graph G is greater than or equal to the upper domination number
Γ (G), which is in turn greater than or equal to the independence number α(G).
In this paper, we initiate the study of the class of graphs G with Γ (G) = γgr(G)
and its subclass consisting of graphs G with α(G) = γgr(G). We characterize the
latter class of graphs among all twin-free connected graphs, provide a number
of properties of these graphs, and prove that the hypercubes are members of
this class. In addition, we give several necessary conditions for graphs G with
Γ (G) = γgr(G) and present large families of such graphs.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under

the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Given a graph G, a set D is a dominating set if every vertex in V (G) − D has a neighbor in D. The
omination number of G is defined as γ(G) = min{|D| : D is a dominating set of G}. A vertex x dominates
vertex y if y is a neighbor of x or y = x. Building a dominating set in G can be viewed as a process of

dding vertices from G to D one by one so that each time a vertex x is added to D it dominates a vertex
hat was not dominated by vertices added to D before x. The size of a largest dominating set obtained by
uch a process is the Grundy domination number, γgr(G), of G. Grundy domination was introduced in [1]

and studied by a number of authors, see [2–9] for a selection of papers on this parameter.
It follows from the definitions that γ(G) ≤ γgr(G) in any graph G, and often the Grundy domination

number is much larger than the domination number of G. In the seminal paper from 2014 [1], the question
of which graphs G enjoy γ(G) = γgr(G) was considered. It was proved that γ(G) = γgr(G) = 1 only in
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complete graphs and γ(G) = γgr(G) = 2 precisely in graphs G whose complement G is the disjoint union of
ne or more complete bipartite graphs. A few years later, Erey proved that the mentioned classes of graphs
re the only connected graphs in which equality γ(G) = γgr(G) = 2 holds [10]. We mention that an analogous
uestion for two related parameters, the total domination number and the Grundy total domination number,
as intensively studied [11–13], yet a complete characterization seems to be elusive.
Since the complete characterization of the graphs G with γ(G) = γgr(G) has been found, natural questions

ppear by involving graph parameters that lie between γ and γgr. Two such important parameters (namely,
he independence number α(G) and the upper domination number Γ (G)) will be considered in this paper,
nd graphs G in which γgr(G) is equal to one of these parameters will be studied. In the next two subsections,

we (1) give some necessary definitions and present basic observations that arise, and (2) formulate the main
results of the paper and its organization.

1.1. Definitions and preliminaries

Let G be a finite, simple graph with vertex set V (G) and edge set E(G). (When there is no chance
f confusion we will shorten this notation by setting V = V (G) and E = E(G).) The order of G

ill be denoted by n(G). For a vertex x ∈ V , the open neighborhood of x is the set N(x) defined by
(x) = {w ∈ V : xw ∈ E}. The closed neighborhood N [x] is N(x) ∪ {x}. The open neighborhood of a

et A ⊆ V is N(A) = ∪a∈AN(a) and its closed neighborhood is N [A] = N(A) ∪ A. Two vertices u and v of
are twins if N [u] = N [v], and we say G is twin-free if it has no twins. For a ∈ A, the private neighborhood

f a (with respect to A) is denoted by pn[a, A] and is defined by pn[a, A] = {w ∈ V : N [w] ∩ A = {a}}.
ny vertex in pn[a, A] is called a private neighbor of a with respect to A. The subgraph of G induced by A

s denoted by G⟨A⟩, and for a positive integer n, we will use [n] to denote the set of positive integers not
arger than n.

A set A of vertices is a dominating set of G if N [A] = V . A dominating set A is a minimal dominating
et if A − {a} does not dominate G for every a ∈ A. (Equivalently, pn[a, A] ̸= ∅ for every a ∈ A.) Imposing
his minimality condition while not requiring the set to be dominating leads to the concept of irredundance.
he set A is irredundant in G if pn[a, A] ̸= ∅ for every a ∈ A. Note that a dominating set of G is a minimal
ominating set only if it is a maximal irredundant set in G. The domination number of G, denoted γ(G),
s the minimum cardinality of a dominating set of G. The upper domination number of G is the cardinality
f a largest minimal dominating set of G and is denoted Γ (G). The minimum cardinality of a maximal
rredundant set in G is the irredundance number of G and is denoted by ir(G) while the upper irredundance
umber, IR(G), is the maximum cardinality of an irredundant set in G. The independence number of G is
enoted α(G) and is the maximum cardinality of a subset of vertices in G that are pairwise nonadjacent;
(G) denotes the independent domination number of G, which is the minimum cardinality of a dominating

set that is also independent. Equivalently, i(G) is the minimum cardinality of a maximal independent set.
If A is a minimal dominating set of cardinality γ(G) (respectively, Γ (G)), then A will be called a γ(G)-set
(respectively, a Γ (G)-set). Similar language will be used for each of these other four graphical invariants
ir, i, α and IR. If I is an independent set in G, then x ∈ pn[x, I] for every vertex x in I, which implies that
I is irredundant. For any graph G, the following well known and much studied string of inequalities

ir(G) ≤ γ(G) ≤ i(G) ≤ α(G) ≤ Γ (G) ≤ IR(G) (1)

follows from these definitions.
In what follows we will need the following result of Cockayne et al.
Theorem 1 ([14, Theorem 5]). If G is a bipartite graph, then α(G) = Γ (G) = IR(G).
2
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Let S = (x1, . . . , xn) be a sequence of distinct vertices in G. We denote the length of S by |S|. The
et {x1, . . . , xn} whose elements are the vertices in S is denoted by Ŝ. The sequence S is called a closed
eighborhood sequence (or a legal sequence) if

N [xi+1] −
i⋃

j=1
N [xj ] ̸= ∅ (2)

or each i ∈ [n − 1]. That is, (x1, . . . , xn) is a closed neighborhood sequence if xi+1 has a private neighbor
ith respect to {x1, . . . , xi+1} for each i ∈ [n − 1]. We will also say that xi+1 footprints the vertices from
[xi+1]−

⋃i
j=1 N [xj ] with respect to S, and that xi+1 is the footprinter of any v ∈ N [xi+1]−

⋃i
j=1 N [xj ]. If S

s a legal sequence and Ŝ is a dominating set of G, then S is called a dominating sequence in G. It is clear that
or a dominating sequence S each vertex in V has a unique footprinter in Ŝ. Hence, the function fS : V → Ŝ

hat maps each vertex to its footprinter is well defined. Clearly, a shortest possible dominating sequence
as length γ(G). A longest possible dominating sequence in G is called a Grundy dominating sequence, and
ts length is the Grundy domination number of G, denoted γgr(G). Legal sequences were introduced in [1]
s sequences of legal moves in the domination game played on a graph. If Staller is the only player making
oves, then the length of the resulting dominating sequence is the Grundy domination number of the graph.
ee the book [15] for more on domination game and its relations with dominating sequences.

Note that any legal sequence in G can always be extended (if it is not already) to a dominating sequence
n G. Thus, any longest legal sequence in G is a Grundy dominating sequence. A legal sequence that remains
egal under any permutation of its vertices is said to be commutative.

The next observation follows immediately from the definitions.

bservation 1. If S = (x1, . . . , xk) is a legal sequence in G such that Ŝ is irredundant, then S is
ommutative.

If A is an irredundant set in G, then any permutation of the vertices in A forms a legal sequence. If
is also a dominating set, then this sequence is a dominating sequence. On the other hand, if A does

ot dominate G, then, as noted above, the sequence can be extended to a dominating sequence in G. This
immediately implies that IR(G) ≤ γgr(G), and thus for any G, we have the following extension of (1)

ir(G) ≤ γ(G) ≤ i(G) ≤ α(G) ≤ Γ (G) ≤ IR(G) ≤ γgr(G). (3)

The join G ⊕ H of graphs G and H is the graph obtained from the disjoint union of G and H by adding
the edges from the set {gh : g ∈ V (G) and h ∈ V (H)}. Given two graphs G and H, the Cartesian product
G□H of G and H is the graph with V (G□H) = V (G) × V (H) and (g, h)(g′, h′) ∈ E(G□H) whenever
g = g′ and hh′ ∈ E(H)) or (gg′ ∈ E(G) and h = h′). Cartesian product is associative and commutative.
he k-cube, Qk, or the hypercube of dimension k, is the Cartesian product of k copies of the graph K2.

.2. Goal and brief outline of the paper

In this paper, we initiate the study of two natural classes of graphs that arise from involving three
nvariants in the above inequality chain (3). Notably, we consider the graphs G with Γ (G) = γgr(G), and
he graphs G with α(G) = γgr(G).

It is easy to see that if u is a twin in the graph G, then Γ (G) = Γ (G − u) and γgr(G) = γgr(G − u).
herefore, we will assume that all the graphs under investigation are twin-free. Furthermore, Γ (G) = γgr(G)

f and only if Γ (C) = γgr(C), for each component C of G. With this in mind we let F denote the class

f twin-free, connected graphs G for which Γ (G) = γgr(G). In addition we let Fα be the subclass of F

3



G. Bacsó, B. Brešar, K. Kuenzel et al. Discrete Optimization 48 (2023) 100777

i
γ

Γ

s
i
s
n
g
t
a
a
i
t
b
l
o
s
N
w

2

t
i

L

P
S
e
g

a

L
u

P
v

v

consisting of those G ∈ F such that α(G) = γgr(G). Note that Fα is a proper subclass of F as can be seen
by Γ (Kn □K2) = n = γgr(Kn □K2) and α(Kn □K2) = 2.

Graphs in F and Fα are in some sense very special, since γgr(G) − Γ (G) and γgr(G) − α(G) can be
arbitrarily large. Indeed, consider the following family of graphs. For each positive integer n let V (Gn) =
{x1, . . . , xn, y1, . . . , yn, z1, . . . , zn}. Both of the sets {y1, . . . , yn} and {z1, . . . , zn} induce a complete subgraph
n Gn and {x1, . . . , xn} is independent. The remaining edges of Gn are xiyi and yizi for each i ∈ [n]. Now,
gr(Gn) = 2n, since S = (x1, x2, . . . , xn, y1, y2, . . . , yn) is a Grundy dominating sequence. On the other hand,
(Gn) = n + 1 and α(Gn) = n + 1.
In Section 2 we consider the class F of graphs G with Γ (G) = γgr(G). Note that any minimal dominating

et D of size Γ (G) gives rise to the partition of G into vertices in D, the private neighbor sets for all vertices
n D, and the remaining vertices (which are not in D and have at least two neighbors in D). We present
everal necessary conditions that a graph in F must possess, which are expressed in terms of the private
eighborhoods of vertices in a minimal dominating set of size Γ (G). While these conditions do not necessarily
ive rise to a characterization of graphs in F , in Section 3 we present several families of graphs that belong
o F or even to Fα. We prove that the operation of join preserves the property of a graph being in F ,
nd provide necessary conditions on graphs G and H whose Cartesian product G□H belongs to Fα. In
ddition, we use some connections with linear algebra to prove that all hypercubes belong to Fα. Section 4
s about graphs in Fα and is the most extensive one. We prove several necessary and sufficient conditions
hat a triangle-free graph in Fα must possess. Most of these conditions are of structural nature and can
e expressed as properties that are related to a maximum independent set of a graph. In particular, they

ead to a characterization of bipartite graphs in Fα whose girth is at least 6. Finally, in Theorem 20 we give
ur main result, which is a characterization of graphs in Fα among all graphs. The characterization is not
tructural, since it relies on specific properties that any legal closed neighborhood sequence must possess.
evertheless, it implies a characterization of n-crossed prisms that belong to Fα. We conclude the paper
ith several remarks and open problems.

. The class F

In this section, we derive a number of properties that hold for any Γ (G)-set if G ∈ F . First we see that
he class F coincides with the class of twin-free, connected graphs whose upper irredundance number equals
ts Grundy domination number.

emma 2. If G is any twin-free, connected graph and IR(G) = γgr(G), then G ∈ F .

roof. Suppose IR(G) = n and let S = (x1, . . . , xn) be a legal sequence formed from a IR(G)-set Ŝ.
ince |S| = IR(G) = γgr(G) by assumption, it follows that Ŝ is a dominating set (for otherwise S could be
xtended to a dominating sequence). Also, Ŝ is a minimal dominating set since Ŝ is irredundant. Now we
et

Γ (G) ≥ |Ŝ| = γgr(G) = IR(G) ≥ Γ (G),

nd thus Γ (G) = γgr(G). □

emma 3. Let G ∈ F . If D is any Γ (G)-set, then pn[u, D] induces a complete subgraph of G for every
∈ D.

roof. Let D = {x1, . . . , xn} be a minimal dominating set of cardinality Γ (G) and suppose that v1 and
2 are distinct vertices in pn[x1, D]. The sequence (x1, x2, . . . , xn) is a Grundy dominating sequence. If
v /∈ E, then (x , x , . . . , x , v , v ) is a legal sequence of length n + 1 since v footprints itself and v
1 2 2 3 n 1 2 1 2

4
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footprints itself. This contradiction implies that G⟨pn[x1, D]⟩ is a complete subgraph. Since any permutation
of D is a legal sequence, the lemma follows. □

Corollary 4. If G is a triangle-free graph in F and D is a Γ (G)-set, then |pn[u, D]| ≤ 2 for every u ∈ D.

In particular, this corollary holds for bipartite graphs in F . Note that if G is triangle-free, then |pn[u, D]| =
2 in the conclusion of Corollary 4 is possible only if u is isolated in the subgraph induced by D.

Lemma 5. If G ∈ F and D is any Γ (G)-set, then for every vertex u in G, there exists x ∈ D such that
pn[x, D] ⊆ N [u].

Proof. Let G ∈ F . Suppose for the sake of contradiction that G has a minimal dominating set D of
cardinality Γ (G) and there exists u ∈ V such that pn[x, D]−N [u] ̸= ∅ for every x ∈ D. Let D = {x1, . . . , xn}
and let x′

i ∈ pn[xi, D] − N [u] for each i ∈ [n]. The sequence (x1, . . . , xn) is a Grundy dominating sequence.
Let S = (u, x1, . . . , xn). It follows that with respect to S, u footprints itself, and for each i ∈ [n], the vertex
xi footprints x′

i. That is, S is a legal sequence in G and |S| > n = γgr(G). This contradiction establishes the
lemma. □

For vertices not belonging to the Γ (G)-set, the conclusion of Lemma 5 can be strengthened as follows.

Lemma 6. Let G ∈ F and let D be a Γ (G)-set. For every u ∈ V − D there exist distinct vertices a and b

in D such that pn[a, D] ∪ pn[b, D] ⊆ N [u].

Proof. Let S = (x1, . . . , xn) be a sequence such that Ŝ = D and let u ∈ V − D. By Lemma 5, there
exists i ∈ [n] such that pn[xi, D] ⊆ N [u]. Since S is commutative, we may assume that i = 1. Suppose first
that ux1 /∈ E. Since γgr(G) = n, the sequence T = (u, x1, . . . , xn) is not legal. Since x1 footprints itself
with respect to T , there exists j with 2 ≤ j ≤ n such that N [xj ] ⊆ N [u] ∪ N [x1] ∪ · · · ∪ N [xj−1]. Now,
pn[xj , D] ∩ N [{x1, . . . , xj−1}] = ∅. It follows that pn[xj , D] ⊆ N [u]. Therefore, pn[x1, D] ∪ pn[xj , D] ⊆ N [u].
Now suppose that ux1 ∈ E. Since u and x1 are not twins, N(x1) − N [u] ̸= ∅ or N(u) − N [x1] ̸= ∅. If
N(x1)−N [u] ̸= ∅, then (u, x1) is a legal sequence but (u, x1, x2, . . . , xn) is not a legal sequence. As in the first
case above, we conclude that there exists j with 2 ≤ j ≤ n, such that pn[x1, D] ∪ pn[xj , D] ⊆ N [u]. On the
other hand, if N(u)−N [x1] ̸= ∅, then (x1, u) is a legal sequence but (x1, u, x2, . . . , xn) is not legal. Once again,
the same reasoning implies that there exists j with 2 ≤ j ≤ n, such that pn[x1, D] ∪ pn[xj , D] ⊆ N [u]. □

In the more restricted class Fα if the set D in Lemma 6 is independent, then a ∈ pn[a, D] for every a ∈ D.
Therefore, we immediately get the following result.

Corollary 7. If G is a graph of order at least 3 that belongs to Fα and A is any α(G)-set, then |N(u) ∩ A| ≥ 2
for every u ∈ V − A.

Let G be a graph in F . Arbitrarily choose and then fix a Γ (G)-set, D = {x1, . . . , xn}, and apply
the following notation. Let Pi = pn[xi, D], where i ∈ [n], and P = ∪n

i=1Pi. For any u ∈ V − D let
u = {j : Pj ⊆ N [u]}. Set X = V − (D ∪ P ).

roposition 8. Let G be a graph in F and let D = {x1, . . . , xn} be any Γ (G)-set.

(i) If u ∈ V − D, then |Iu| ≥ 2. In particular, if u ∈ Pi, for some i ∈ [n], then i ∈ Iu.

(ii) If v ∈ Pi, for some i ∈ [n], then for every j ∈ Iv − {i}, there exists k ∈ Iv such that xjxk ∈ E.

5
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(iii) If w ∈ X and i ∈ [n] such that xixj /∈ E for all j ∈ Iw, then wxi ∈ E or i /∈ Iw.
(iv) γgr(G⟨X⟩) ≤ n.

Proof. The first part of the statement (i) is proved in Lemma 6, while the second part follows from
Lemma 3. For the proof of the statement (ii) assume that there exist v ∈ Pi and j ∈ Iv − {i} such that
xjxk /∈ E for all k ∈ Iv. Consider the sequence, which starts with the vertices from {xk : k ∈ Iv − {j}} in
ny order, and is followed by (v, xj). Clearly, for each k ∈ Iv − {j}, xk footprints the vertices in Pk, while v

ootprints vertices in Pj . Finally, xj footprints itself, since it is not adjacent to xk, for any k ∈ Iv. In the end,
ne can add the remaining vertices of D to the sequence, each of which footprints its private neighborhood.
he resulting sequence is legal of length n + 1, a contradiction to G ∈ F .
For the proof of (iii) let w ∈ X and i ∈ [n] such that xixj /∈ E for all j ∈ Iw, and assume that wxi /∈ E

while i ∈ Iw. Consider the sequence, which starts with the vertices from {xj : j ∈ Iw} − {xi} in any order,
is followed by (w, xi), and completed by the remaining vertices in D. This sequence is legal because each
vertex of D − {xi} footprints a vertex in P , w footprints vertices in Pi, and xi footprints itself. Statement
(iv) is clear. □

3. Examples and constructions of graphs in F

In this section, we present some families of graphs that belong to F or Fα as well as give some
constructions by which the class F is preserved. The following classes of graphs belong to F , most of which
also belong to Fα. (Note that some of the graphs in the following classes of graphs have twins, yet the
equality Γ (G) = γgr(G) holds for all graphs G in the mentioned classes.)

1. Complete multipartite graphs, G = Kn1,...,nk
, such that n1 ≥ · · · ≥ nk, k ≥ 2, and nk−1 ≥ 2. Note

that α(G) = Γ (G) = γgr(G) = n1. The special case where ni = 2 for all i ∈ [k] are the so-called
cocktail-party graphs, for which the authors of [1] proved that the Grundy domination number equals
the domination number.

2. Prisms over complete graphs, G = Kn □K2, for n ≥ 2. Note that Γ (G) = γgr(G) = n. Also, 2 = α(G),
which is less than γgr(G) unless n = 2.

3. Certain subclasses of Kneser graphs, as noted by Brešar, Kos and Torres in [6]. Given positive integers
n and r such that n ≥ 2r, the Kneser graph K(n, r) has as its vertex set the set of all r-subsets of [n].
Two vertices are adjacent in K(n, r) if and only if they are disjoint. A famous result by Erdös, Ko and
Rado [16] is that α(K(n, r)) =

(
n−1
r−1

)
. Brešar et al. proved that γgr(K(n, 2)) = α(K(n, 2)) for n ≥ 6

and that for any r ≥ 3 there exists a positive integer nr such that γgr(K(n, r)) = α(K(n, r)) =
(

n−1
r−1

)
,

for n ≥ nr. Therefore, K(n, 2) ∈ Fα if n ≥ 6, and for n ≥ 3, K(n, r) ∈ Fα for each n larger than some
threshold value that depends on r.

4. The class of (twin-free, connected) cographs. Recall that the class of P4-free graphs (also known
as cographs) are those graphs that can be constructed from K1 by repeatedly applying the graph
operations of taking disjoint unions or joins. It was proved in [1] that γgr(G) = α(G), for any cograph
G, implying that the class Fα contains the class of twin-free connected cographs. Alternatively, one can
prove this by using Lemma 9 below together with the obvious fact that the disjoint union of graphs
from F have equal independence and Grundy domination numbers.

In the following result we consider the join G ⊕ H of graphs G and H. This is obtained from the disjoint
union of G and H by adding the edges from the set {gh : g ∈ V (G) and h ∈ V (H)}.
Lemma 9. If G1 and G2 are graphs in F , then G1 ⊕ G2 ∈ F .
6
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Proof. Let G1 and G2 be graphs in F and assume without loss of generality that Γ (G1) ≥ Γ (G2). We
laim that Γ (G1 ⊕G2) = γgr(G1 ⊕G2) = Γ (G1). Note that a minimal dominating set of either G1 or G2 is a

minimal dominating set of their join. Furthermore, if A is any subset of V (G1 ⊕G2) and A contains a vertex
from each of G1 and G2, then A dominates G1 ⊕ G2. We infer that Γ (G1 ⊕ G2) ≥ Γ (G1). If Γ (G1) = 1,
then the join is a complete graph and the claim holds. Suppose now that Γ (G1) ≥ 2. By the above we can
select a largest minimal dominating set D of G1 ⊕ G2 to be a Γ (G1)-set. Any permutation of the vertices
of D is a dominating sequence of G1 ⊕ G2. Any sequence of vertices from V (G1 ⊕ G2) of length more than
|D| is not a legal sequence since γgr(G1) = |D| and since a sequence that contains at least one vertex from
each of G1 and G2 cannot be extended to a legal sequence. □

It seems natural to investigate whether there exist nontrivial Cartesian products in F or in Fα. We will
make use of the following result from [3].

Proposition 10 ([3, Proposition 3]). For any two graphs G and H,

γgr(G□H) ≥ max{γgr(G)n(H), γgr(H)n(G)}.

We now prove a necessary condition for a Cartesian product to belong to Fα.

Lemma 11. If G and H are two graphs such that G□H ∈ Fα, then both G and H are in Fα and
α(G)
n(G) = α(H)

n(H) .

roof. Let G and H be graphs such that G□H ∈ Fα. It is well-known that α(G□H) ≤ min{α(G)n(H),
(H)n(G)}. By Proposition 10 we have γgr(G□H) ≥ max{γgr(G)n(H), γgr(H)n(G)}. Since γgr(G□H) =
(G□H), it follows that

max{γgr(G)n(H), γgr(H)n(G)} ≤ min{α(G)n(H), α(H)n(G)}.

e infer the following.

γgr(G)n(H) ≤ α(G)n(H) (4)
γgr(G)n(H) ≤ α(H)n(G) (5)
γgr(H)n(G) ≤ α(G)n(H) (6)
γgr(H)n(G) ≤ α(H)n(G) (7)

he first of these inequalities together with α(G) ≤ γgr(G) implies that γgr(G) = α(G). Similarly, using
he last of these four inequalities we get γgr(H) = α(H). Therefore, {G, H} ⊆ Fα. Finally, we use the
econd and the third of these inequalities together with γgr(G) = α(G) and γgr(H) = α(H) to conclude that

α(G)
n(G) = α(H)

n(H) . □

By Lemma 11, all but one book graph, or graphs of the form K1,m □K2, are not in Fα, since α(K2)
n(K2) =

1
2 <

α(K1,m)
n(K1,m) when m > 1. Since Pn ∈ Fα if and only if n ∈ [3], one can use Lemma 11 together with the

act that α(P3 □P3) = 5 and γgr(P3 □P3) = 6 to see that P2 □P2 is the only grid graph with two nontrivial
actors that is in Fα. The 3-dimensional hypercube Q3 = C4 □K2 is an example of a (nontrivial) Cartesian

product that belongs to Fα. In addition, all hypercubes belong to Fα, which we will prove by using some
connections with linear algebra.

Let G be a graph of order n, and without loss of generality denote its vertex set by [n]. Let S(G) be
the family of all n × n real symmetric matrices whose i, j-entry, where i ̸= j, is non-zero if and only if
7
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ij ∈ E(G). Note that there are no restrictions on the diagonal entries. Minimum rank of G is defined as
r(G) = min{rank(A) : A ∈ S(G)}.
In [4], a close connection was established between a variation of the Grundy domination number, called

the Z-Grundy domination number, and the zero forcing number, the concept introduced in [17] and studied
in a number of papers both by graph theorists and linear algebraists. Lin continued the investigation from [4],
and among other results found a similar relation between the Grundy domination number of a graph and
the so-called loop zero forcing number [8]. The latter concept is in turn related to a version of a minimum
rank of a graph, which is defined as follows.

Let Sℓ̇(G) denote the set of all matrices in S(G) whose all diagonal entries are non-zero. Then, mrℓ̇(G) =
in{rank(A) : A ∈ Sℓ̇(G)}. Lin proved that γgr(G) ≤ mrℓ̇(G) holds for every graph G, which together with

3) yields
α(G) ≤ γgr(G) ≤ mrℓ̇(G),

or any graph G. Now, let G be the hypercube Qd, where d is a positive integer. Clearly, α(Qd) = 2d−1,
hich gives 2d−1 ≤ γgr(Qd). For the reversed inequality we invoke a result of Huang, Chang and Yeh

rom [18, Theorem 10], where in the proof a matrix Bd appears, which belongs to S(Qd). In addition, it
s easy to see that diagonal entries of Bd are non-zero, which implies Bd ∈ Sℓ̇(Qd). It is proved in [18] that
ank(Bd) = 2d−1, which yields mrℓ̇(Qd) ≤ 2d−1, hence γgr(Qd) ≤ 2d−1. We thus infer the following result.

roposition 12. Hypercubes belong to Fα. More precisely, γgr(Qd) = α(Qd) = 2d−1 for all positive integ-
rs d.

This result is an improvement of the result from [17] that the zero-forcing number in hypercubes Qd

quals 2d−1.

. The class Fα

In this section, we prove our main result, a characterization of the graphs that are in Fα. In the beginning
f the section we focus on triangle-free graphs that are in Fα. Our first result shows that classifying
riangle-free graphs in Fα reduces to classifying all bipartite graphs in Fα.

roposition 13. If G is a triangle-free graph of order at least 3 and G ∈ Fα, then G is bipartite with
(G) = n(G)/2 or G is bipartite and has a unique α(G)-set. In particular, if A is any α(G)-set, then V − A

s independent.

roof. Let A = {x1, . . . , xn} be an α(G)-set. We first show that if x, y ∈ V −A such that N(x)∩N(y)∩A =
, then xy ̸∈ E. Suppose to the contrary that {x, y} ⊆ V − A such that xy ∈ E and N(x) ∩ N(y) ∩ A = ∅.
ssume without loss of generality that N(x) ∩ A = {x1, . . . , xr} and N(y) ∩ A = {xr+1, . . . , xt}. The

sequence S = (x1, . . . , xn) is a Grundy dominating sequence. But now S′ = (x1, . . . , xr, x, xr+1, . . . , xn) is
legal sequence. (In S′, x footprints y and xi footprints xi for every i ∈ [n].) This is a contradiction and

herefore no such pair x, y ∈ V − A exists.
Next, we show that V −A is indeed independent. Let {x, y} ⊆ V −A. If N(x)∩N(y)∩A = ∅, then xy /∈ E

rom the above argument. On the other hand, if N(x) ∩ N(y) ∩ A ̸= ∅, then xy /∈ E since G is triangle-free.
n all of these cases V − A is an independent set. It follows that G is bipartite. Thus, α(G) ≥ n(G)/2.

Now, if α(G) = n(G)/2, we are done, so let us assume that α(G) > n(G)/2. We claim that there is
nly one α(G)-set, and suppose to the contrary that A and B are distinct α(G)-sets. Let C = A ∩ B and let

= V −(A∪B). In addition, let A1 = A−C and B1 = B−C. Since A ̸= B and |A| = |B| = α(G) > n(G)/2,

e infer that C ̸= ∅ and that neither of A1 nor B1 is empty. From the above argument, both of A1 ∪ D

8
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and B1 ∪ D are independent. Let u be any vertex in C and let v be any vertex in A1. Since N(C) ⊆ D

nd N(D) ⊆ C there is no u, v-path in G, which contradicts the fact that G is connected. Therefore, if
(G) > n(G)/2, then G has a unique α(G)-set. □

Based on the above result, we spend the remainder of this section focusing on bipartite graphs. We next
ive two properties that help us determine when a bipartite graph is in Fα.

Property H. If A is any α(G)-set, then for every W ⊆ V − A with |W | < |A|, we have |N(W )| ≥ |W | + 1.

roposition 14. If G is a bipartite graph of order at least 3 and G ∈ Fα, then G satisfies Property H.

Proof. Assuming that the statement is false, let A be an α(G)-set, and W = {w1, . . . , wk} be a subset of
V − A with |W | < |A| and |N(W )| ≤ |W |. Since G is connected, there exists x ∈ N(W ) having a neighbor
y /∈ W . Letting A−N(W ) = {x1, . . . , xℓ}, note that S = (w1, . . . , wk, x, x1, . . . , xℓ) is a legal sequence, since
x footprints y while every other vertex in S footprints itself (note that W is independent by Proposition 13).
Since |Ŝ| ≥ |A| + 1, this contradicts the assumption that G ∈ Fα. □

Property T. If A is any α(G)-set and w ∈ V − A, then for each u ∈ N(w) ∩ A, we have N(u) ⊆
N((N(w) ∩ A) − {u}).

Proposition 15. If G is a triangle-free graph of order at least 3 and G ∈ Fα, then G satisfies Property T.

Proof. Let A = {x1, . . . , xn} be an α(G)-set and let w ∈ V − A. By Proposition 13, G is bipartite and
V − A is independent. Reindexing if necessary, we may assume N(w) = N(w) ∩ A = {x1, . . . , xk}. Suppose
for some i ∈ [k] that

N(xi) ̸⊆ N(N(w) − {xi}).

That is, there exists y ∈ N(xi) such that y ̸∈
⋃

j ̸=i,j∈[k] N(xj). Note that

S = (x1, . . . , xi−1, xi+1, . . . , xk, w, xi, xk+1, . . . , xn)

is a legal sequence since xj footprints itself for j ∈ [n] − {i}, w footprints xi, and xi footprints y. However,
this is a contradiction. Therefore no such xi exists, and G satisfies Property T. □

Lemma 16. If G is a bipartite graph of order at least 3 in Fα, and A is any α(G)-set, then |N(x) ∩ N(y) ∩ A|
̸= 1 for every pair x, y ∈ V − A.

Proof. By Proposition 15, G satisfies Property T. By Corollary 7, |N(u) ∩ A| ≥ 2 for every u ∈ V − A.
Let {x, y} ⊆ V − A and suppose to the contrary that N(x) ∩ N(y) ∩ A = {z}. It follows that y ∈ N(z) and
y ̸∈ N((N(x) ∩ A) − {z}), which violates Property T. □

By Corollary 7 and Lemma 16, we can classify all bipartite graphs in F of girth 6 or more.

Theorem 17. A bipartite graph G with girth at least 6 is in F if and only if G = K1 or G is a star K1,r,
where r ≥ 1.

Proof. It is easy to see that K1 and all stars belong to Fα. For the converse let G be a bipartite graph in

the class F having order at least 3 and girth at least 6. Since G is bipartite, it follows from Theorem 1 that

9
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α(G) = Γ (G). Thus, G ∈ F if and only if G ∈ Fα. Let A be any α(G)-set. Suppose that |V − A| ≥ 2. By
roposition 13, V −A is independent. Since G is connected, there exists a pair of vertices x and y that belong

o V −A such that N(x)∩N(y)∩A = N(x)∩N(y) ̸= ∅. By Lemma 16, we infer that |N(x) ∩ N(y) ∩ A| ≥ 2,
hich implies that G contains a 4-cycle. This is a contradiction, and thus |A| = n − 1, which means that G

s a star. □

roposition 18. Let G be a connected bipartite graph of order 5 or more, and let A be an α(G)-set. If there
xist distinct vertices x and y in V − A and distinct vertices u and v in A such that N(x) ∩ A = {u, v} =
(y) ∩ A, then G ̸∈ Fα.

roof. Suppose to the contrary that G ∈ Fα. Note that S = (x1, x2, . . . , xk) is a legal sequence where
Ŝ = A. Moreover, reindexing if necessary, we may assume N(x) ∩ A = {x1, x2} = N(y) ∩ A. Note that if
N({x1, x2}) = {x, y}, then G = C4. Therefore, we may assume there exists z ∈ N(x1) − {x, y}.

Suppose first that N(x2) ⊆ N(x1). If there exists w ∈ N(x1)−N(x2), then S′ = (x2, x, x1, x3, x4, . . . , xk)
is a legal sequence as xi footprints itself for 2 ≤ i ≤ k, x1 footprints w, and x footprints x1. Thus, this
case cannot occur and we may assume N(x1) = N(x2). However, now S′′ = (x, y, x1, x3, x4, . . . , xk) is a
legal sequence since each vertex of S′′ other than x1 footprints itself and x1 footprints z. Therefore, we
may assume N(x2) ̸⊆ N(x1). Let t ∈ N(x2) − N(x1) and consider T = (x1, x, x2, x3, . . . , xk). Note that T

is a legal sequence as each vertex of T other than x and x2 footprint themselves, x footprints x2, and x2

footprints t.
In each case, we have a contradiction. Thus, G ̸∈ Fα. □

We next present a family of bipartite graphs that shows Properties H and T alone are not sufficient to
guarantee that a bipartite graph is in Fα. For each positive integer n at least 3, we construct a bipartite
graph Gn. The set of vertices of Gn consists of two partite sets A = {ai,j : i ∈ [n], j ∈ [3]} ∪ {x, y} and
B = {ui : i ∈ [n]} ∪ {wi : i ∈ [n]}. The vertices x and y are adjacent to every vertex of B, and for every
i ∈ [n], the vertex ai,1 is adjacent to ui and wi, while ai,2 and ai,3 are adjacent only to ui. Now, A is the
unique α-set of G with |A| = 3n + 2, and G satisfies Properties H and T. On the other hand, the sequence
S = (a1,3, a1,2, u1, a1,1, a2,3, a2,2, u2, a2,1, . . . , an,3, an,2, un, an,1) is a closed neighborhood sequence, since ai,3

and ai,2 footprint themselves, ui footprints ai,1, and ai,1 footprints wi, for all i ∈ [n]. Since |Ŝ| = 4n, this
implies that G /∈ Fα.

We next consider the following additional property, which can be viewed as a generalization of Property T.

Property T*. If A is any α(G)-set and W ⊆ V − A, then for every U ⊆ N(W ) ∩ A with |U | = |W | we
have N(U) ⊆ N((N(W ) ∩ A) − U).

To see that Property T* is a generalization of Property T, note that the latter is obtained from
Property T* by letting W = {w} and U = {u}.

Proposition 19. Let G be a connected bipartite graph such that for any α(G)-set A, the set V − A is
independent. If G satisfies Properties H and T∗, then G ∈ Fα.

Proof. Let G be a bipartite graph in which Properties H and T∗ hold (for every α-set of G). Let A be an
α(G)-set. Suppose that S is a closed neighborhood sequence of G that involves some vertices in V − A, and
let w1, . . . , wk be these vertices in the order that they appear in S. We may set

S = (a , . . . , a , w , a , . . . , a , w , . . . , a , w , a , . . . , a ),
1 i1 1 i1+1 i2 2 ik k ik+1 m

10
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where each of i1 = 0 and ik = m is also possible (in the first case w1 is the first vertex of S, and in the
econd case wk ends S), and ar ∈ A for all r ∈ [m].

We claim that for each p ∈ [k],

|(N(w1) ∪ · · · ∪ N(wp)) − {a1, . . . , aip}| ≥ p. (8)

irst, we prove this for p ∈ {1, 2} and then use induction. For p = 1, suppose to the contrary, that
N(w1) − {a1, . . . , ai1}| = 0. This implies that every vertex in N [w1] is dominated by {a1, . . . , ai1}. Hence,

1 footprints no vertex, a contradiction. For p = 2, suppose to the contrary that |(N(w1) ∪ N(w2))
{a1, . . . , ai2}| ≤ 1. Note that we may assume |(N(w1) ∪ N(w2)) − {a1, . . . , ai2}| = 1 for otherwise w2

does not footprint a vertex. Let (N(w1) ∪ N(w2)) − {a1, . . . , ai2} = {a}. By Property H, |N(w2)| ≥ 2 and
therefore some neighbor of w2 is in {a1, . . . , ai2}. Thus, w2 footprints only a and so aw1 ̸∈ E. It follows
that N(w1) ⊆ {a1, . . . , ai2}. Let x be the last vertex of N [w1] to appear in (a1, . . . , ai1 , w1, ai1+1, . . . , ai2).
It is clear that x ̸= w1, for otherwise w1 does not footprint a vertex. Hence, x ∈ A, and so by Property T*,
N(x) ⊆ N(N(w1) − {x}). We derive that x does not footprint a vertex, a contradiction.

Now, assume that for some j ≥ 2

|(N(w1) ∪ · · · ∪ N(wj−1)) − {a1, . . . , aij−1}| ≥ j − 1.

We claim that also
|(N(w1) ∪ · · · ∪ N(wj−1)) − {a1, . . . , aij

}| ≥ j − 1. (9)

Suppose this is not the case, and let t ∈ {ij−1 + 1, . . . , ij} be the smallest index such that

|(N(w1) ∪ · · · ∪ N(wj−1)) − {a1, . . . , at}| = j − 2.

Let w ∈ V −A be a vertex footprinted by at. Let W = {w1, . . . , wj−1} and let U = (N(w1)∪· · ·∪N(wj−1))−
{a1, . . . , at−1}. Then, |U | = j − 1 = |W |, w ∈ N(U), while w /∈ N(N(W ) − U), which is a contradiction to
Property T*, and (9) is proved.

Since S is a closed neighborhood sequence, wj footprints at least one vertex. We claim that wj footprints
a vertex other than itself. If this were not the case, then N [wj ] − N [Ŝ′] = {wj}, where S′ is the (leading)
subsequence of S given by S′ = (a1, . . . , ai1 , w1, ai1+1, . . . , ai2 , w2, . . . , aij

). However, this is not possible
since Ŝ′ dominates wj . Thus, wj footprints some vertex a ∈ N(wj). It is clear that a /∈ {a1, . . . , aij

}, which
implies, combined with (9) that |(N(w1) ∪ · · · ∪ N(wj)) − {a1, . . . , aij

}| ≥ j. By induction we now have that

|(N(w1) ∪ · · · ∪ N(wp)) − {a1, . . . , aip}| ≥ p, for every p ∈ [k],

and so (8) is proved. In particular, |(N(w1) ∪ · · · ∪ N(wk)) − {a1, . . . , aik
}| ≥ k. We claim that

|(N(w1) ∪ · · · ∪ N(wk)) − {a1, . . . , am}| ≥ k. (10)

Note that whenever a vertex in (N(w1) ∪ · · · ∪ N(wk)) ∩ {aik+1, . . . , am} is added to S, it does not footprint
itself. Suppose that |(N(w1) ∪ · · · ∪ N(wk)) − {a1, . . . , am}| < k, and let at ∈ (N(w1) ∪ · · · ∪ N(wk)) ∩
{aik+1, . . . , am} be the vertex with the smallest index t such that |(N(w1) ∪ · · · ∪ N(wk)) − {a1, . . . , at}| =
k − 1. Let w ∈ V − A be a vertex footprinted by at. Now, setting W = {w1, . . . , wk}, and U =
(N(w1)∪· · ·∪N(wk))−{a1, . . . , at−1}, we infer that |U | = k, and w ∈ N(U), while w /∈ N(N(W )−U). This
is a contradiction with Property T*, hence (10) holds. Since V −A is independent by the initial assumption,
we get

|(N(w1) ∪ · · · ∪ N(wk)) ∩ A − {a1, . . . , am}| ≥ k.

Thus
|Ŝ| = m + k ≤ |Ŝ ∩ A| + |(N(w1) ∪ · · · ∪ N(wk)) ∩ A − (Ŝ ∩ A)| ≤ |A|
and so G ∈ Fα. □

11
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Q

Fig. 1. Graph Q3 does not satisfy Property T*.

We now provide an example of a graph which is in Fα yet does not satisfy Property T*. From Section 3,
3 ∈ Fα. However, Q3 does not satisfy Property T*. For example, in Fig. 1 consider the α(Q3)-set depicted

by the black vertices and the sets W = {1, 2, 3} and U = {a, c, d}. Then 3 ∈ N(U) yet 3 ̸∈ N(N(W ) − U).
We point out that Properties H are structural properties. Although we were not able to find structural

properties that are necessary and sufficient to guarantee that a graph is in Fα, we are able to show that the
following property based on checking all legal sequences of G is necessary and sufficient to guarantee that a
graph is in Fα.

Property U. Let A be any α(G)-set. If S is a legal sequence and W = Ŝ ∩ (V − A), then |(N(W ) ∩ A) − Ŝ|
≥ |W |.

Theorem 20. If G is a connected graph, then G ∈ Fα if and only if G satisfies Property U.

Proof. Let S = (x1, . . . , xm) be a Grundy sequence of G, let A be any α(G)-set, and let B = V − A. We
first show that if G satisfies Property U, then G ∈ Fα. We let W = B ∩ Ŝ and (N(W ) ∩ A) ∩ Ŝ = X. Let
A′ = A − N(W ). Suppose some a′ ∈ A′ is not in Ŝ. Then S′ = (x1, . . . , xm, a′) is a longer legal sequence,
which is a contradiction. Hence, A′ ⊆ Ŝ. By Property U, |(N(W ) ∩ A) − Ŝ| ≥ |W | and therefore

|Ŝ| = |B ∩ Ŝ| + |A ∩ Ŝ| = |W | + |X| + |A′| ≤ |(N(W ) ∩ A) − Ŝ| + |X| + |A′| = |A|.

On the other hand, |Ŝ| ≥ |A| and so it must be that |Ŝ| = |A| and G ∈ Fα.
For the converse, suppose G does not satisfy Property U. Thus, there exists a legal sequence S =

(x1, . . . , xm) where W = B ∩ Ŝ and |(N(W ) ∩ A) − Ŝ| < |W |. Let A′ = A − N(W ). Let A′′ = {a ∈ A′ :
a /∈ Ŝ}. Write A′′ = {y1, . . . , yℓ}. Then we can extend S to the legal sequence S′ = (x1, . . . , xm, y1, . . . , yℓ).
Therefore,

γgr(G) ≥ |Ŝ′| = |W | + |(N(W ) ∩ A) ∩ Ŝ| + |A′|
> |(N(W ) ∩ A) − Ŝ| + |(N(W ) ∩ A) ∩ Ŝ| + |A − N(W )|
= |A|,

and we conclude that G /∈ Fα. □

We can use Property U to show that the only n-crossed prism graph in Fα is the 4-crossed prism graph.

Recall the n-crossed prism graph for even positive integer n ≥ 4 is defined as follows. Take two disjoint

12
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copies of Cn, say C1
n = u1u2 · · · un and C2

n = v1v2 · · · vn and add the edges vsus+1 for s ∈ {1, 3, . . . , n − 1}
and the edges vtut−1 for t ∈ {2, 4, . . . , n}. The 4-crossed prism graph is isomorphic to the 3-dimensional
hypercube Q3. Note that the n-crossed prism graph is bipartite, cubic, and vertex-transitive.

Corollary 21. The n-crossed prism graph is in Fα if and only if n = 4.

Proof. Let Gn be the n-crossed prism graph, and let A = {ui, vi : i is odd} and B = {ui, vi : i is even} be
he two α(Gn)-sets. We first show that the n-crossed prism graph Gn does not satisfy Property U when n > 4.
onsider the legal sequence S = (u2, v1, v2, u3, u1). Thus, W = B∩Ŝ = {u2, v2} and (N(W )∩A)−Ŝ = {v3}.
ence, Gn does not satisfy Property U when n > 4. Since G4 = Q3, the converse follows from the result
entioned in Section 3. □

Finally, we note that there is some connection to studying graphs containing triangles in Fα and studying
ipartite graphs in Fα. In what follows, we let Guv denote the graph obtained from G be identifying two
ertices u and v of G and then removing any duplicate edges that result from this identification.

heorem 22. Suppose G ∈ Fα and I is a maximum independent set in G. For any pair x, y ∈ V − I,
(Gxy) = γgr(Gxy).

roof. Write I = {v1, . . . , vk} and note that S = (v1, v2, . . . , vk) is a legal sequence. Fix x, y ∈ V − I and
et w denote the vertex of G′ = Gxy that arises from identifying x and y. Note that α(G′) = k and that S

s a legal sequence in G′ since each vertex of S footprints itself. Thus, γgr(G′) ≥ k. Suppose there exists a
egal sequence, say A = (t1, t2, . . . , tk+1), in G′ of length k + 1. For each i ∈ [k + 1], there is a nonempty
ubset Ui of V (G′) such that ti footprints each vertex of Ui with respect to A.

Suppose by contradiction that w ̸∈ Â. If Ui−{w} ≠ ∅ for each i ∈ [k+1], then every vertex of A footprints
t least one vertex in G and hence A is a legal sequence in G. This contradicts the fact that γgr(G) = k.
hus, Uj = {w} for some j with 2 ≤ j ≤ k + 1. Without loss of generality we may assume that xtj ∈ E.
ow, as a sequence in G we see that A is legal since ti footprints Ui for i ̸= j and tj footprints x. This
gain contradicts γgr(G) = k and therefore we infer that w ∈ Â. That is, w = ti for some i ∈ [k + 1].
onsider the sequences A′ = (t1, t2, . . . , ti−1, x, ti+1, . . . , tk+1) and A′′ = (t1, t2, . . . , ti−1, y, ti+1, . . . , tk+1) in
. If w footprints itself with respect to A in G′, then x footprints itself with respect to A′ in G. Otherwise,
footprints a vertex si ∈ Ui − {w} with respect to A. If xsi ∈ E, then x footprints si in G with respect

o A′. Otherwise, ysi ∈ E and y footprints si in G with respect to A′′. It follows that A′ or A′′ is a legal
equence in G, which contradicts γgr(G) = k.

Therefore, γgr(G′) = k = α(G′). □

By Theorem 22, if we contract all adjacent pairs of vertices in the complement of an α(G)-set the resulting
raph will be a bipartite graph in the class Fα if the original graph is in Fα. Thus, a characterization of the
ipartite graphs in Fα gives partial information about the structure of all graphs in Fα.

. Concluding remarks

In this paper, we initiated the study of graphs G in which γgr(G) = Γ (G), or γgr(G) = α(G), respectively.
ince the graphs G in which γgr(G) = γ(G) have been completely characterized [1,10], studying the
entioned two classes of graphs is the natural step forward.
We found several properties of graphs G in family F of connected twin-free graphs with γgr(G) = Γ (G);
he properties are related to the partition of a graph G derived from a Γ (G)-set D, which is formed by D,
13
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private neighborhoods of vertices in D, and the remainder of the graph. It would be interesting to know if
hese properties together imply that the graph belongs to F , which we formulate as the following problem.

roblem 1. Is the reverse direction in Proposition 8 also true? That is, do the properties (i)–(iv) together
mply that a twin-free, connected graph is in F?

Besides the class F we also consider the class Fα consisting of connected, twin-free graphs with α(G) =
γgr(G). The two classes of graphs are rather rich, which is reflected in a number of families that belong to
one or both of the classes (for instance, we proved that a large family of Kneser graphs as well as all cographs
and hypercubes satisfy α = γgr). In addition, several graph operations preserve the property of being in one
of the two classes.

The most thorough investigation was given to the class Fα. We proved that triangle-free graphs in Fα

are always bipartite graphs in which an α-set is either unique or of the size half the order. We found two
structural properties (called Property H and Property T) of bipartite graphs in Fα, but they turned out
not to be sufficient for a graph to be in Fα. It would be interesting to investigate whether Property T could
be strengthened in such a way that together with Property H it would yield a characterization of bipartite
graphs in Fα. In particular, Propositions 14, 15 and 19 lead us to the following question.

Problem 2. Is there a condition stronger than Property T but weaker than Property T* such that the
connected bipartite graphs in Fα would be characterized by this condition and Property H?

Finally, a different kind of condition (called Property U) was established, which characterizes all graphs
in Fα. The condition relies on certain connections between legal sequences and α-sets in G, and as a result

e could determine which of the graphs are in Fα within the class of n-crossed prisms. It will be interesting
f one can use Property U to determine the graphs in Fα within some other natural class of graphs.
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