Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "keywords" (mechanical activation) .

1 - 7 / 7
First pagePrevious page1Next pageLast page
1.
Influence of curing / drying methods including microwave heating on alkali activation of waste casting cores
Barbara Horvat, Vilma Ducman, 2021, published scientific conference contribution

Abstract: Within previous investigation alkali activation of waste casting cores at room temperature did not give promising results, i.e. when the precursor was gently ground and sieved below 600 %m the alkali activated material fell apart at demolding, and when the precursor was ground below 90 %m, the alkali activated material did not solidify in more than 2 years. , Therefore different drying/curing methods were applied to enhance the reaction. Waste casting cores were prepared in two granulations (sieved below 600 %m and below 90 %m), activated with Na -water glass and 10 M NaOH, cured at different temperatures (70 °C and room temperature), and subsequently cured/dried at three different conditions: room temperature, 110 °C, and irradiated with microwaves. The highest compressive strength, 25 MPa, was gained with subsequent curing/drying at 110 °C. The lowest density, 0.5 kg/l, with compressive strength above 3 MPa, was achieved with subsequent curing/drying with microwaves .
Keywords: waste casting cores, alkali activation, curing, drying, microwaves, mechanical strength
Published in DiRROS: 22.01.2024; Views: 206; Downloads: 105
.pdf Full text (9,29 MB)
This document has many files! More...

2.
Particle size manipulation as an influential parameter in the development of mechanical properties in electric arc furnace slag-based AAM
Katja Traven, Mark Češnovar, Vilma Ducman, 2019, original scientific article

Abstract: Alkali-activated materials (AAM) have gained recognition as a promising alternative to technical ceramic and building materials owing to the lower energy demands for production and the potential to use slag as a precursor. In the present study, five sets of slag-based AAM pastes were prepared with different particle sizes (fractions d < 63, 63 < d < 90, and 90 < d < 125 μm in different mass ratios) under the same curing regime and using a fixed precursor to activator (water) mass ratio. Precursors and the hardened AAM are evaluated using BET, XRD, XRF, SEM, FTIR, reactivity of precursors by leaching, and mercury intrusion porosimetry (MIP). Chemical analysis indicated only marginal differences among the different-sized fractions of input materials, whereas the BET surface area and reactivity among the precursors differed significantly-smaller particles had the largest surface area, and thus, higher reactivity. The mineralogical differences between the precursors and hardened AAM were negligible. The results revealed that compressive strength was significantly influenced by particle size, i.e., a threefold increase in strength when the particle size was halved. Microstructural evaluation using MIP confirmed that the porosity was the lowest in AAM with the smallest particle size. The low porosity and high reactivity of the fine fractions led to the highest compressive strength, confirming that manipulation of particle size can significantly influence the mechanical properties.
Keywords: alkalijsko aktivirani materiali, žlindra iz obločne peči, mehanska aktivacija, mehanske lastnosti, poroznost, alkali-activated materials (AAM), electric arc furnace steel slag, mechanical activation, mechanical properties, porosity
Published in DiRROS: 22.11.2023; Views: 258; Downloads: 133
.pdf Full text (2,26 MB)
This document has many files! More...

3.
Potential of green ceramics waste for alkali activated foams
Barbara Horvat, Vilma Ducman, 2019, original scientific article

Abstract: The aim of the paper is to research the influence of foaming and stabilization agents in the alkali activation process of waste green ceramics for future low cost up-cycling into lightweight porous thermal insulating material. Green waste ceramics, which is used in the present article, is a green body residue (non-successful intermediate-product) in the synthesis of technical ceramics for fuses. This residue was alkali activated with Na-water glass and NaOH in theoretically determined ratio based on data from X-ray fluorescence (XRF) and X-ray powder diffraction (XRD) that was set to maximise mechanical properties and to avoid efflorescence. Prepared mixtures were compared to alkali activated material prepared in theoretically less favourable ratios, and tested on the strength and density. Selected mixtures were further foamed with different foaming agents, that are Na-perborate (s), H2O2 (l), and Al (s), and supported by a stabilization agent, i.e., Na-dodecyl sulphate. The goal of the presented work was to prepare alkali activated foam based on green ceramics with density below 1 kg/l and compressive strength above 1 MPa.
Keywords: alkali activation, foaming, SEM, XRF, XRD, mechanical strength
Published in DiRROS: 14.09.2023; Views: 275; Downloads: 140
.pdf Full text (6,88 MB)
This document has many files! More...

4.
Mechanical, microstructural and mineralogical evaluation of alkali-activated waste glass and stone wool
Majda Pavlin, Barbara Horvat, Ana Frankovič, Vilma Ducman, 2021, original scientific article

Abstract: Mineral waste wool represents a significant part of construction and demolition waste (CDW) not yet being successfully re-utilized. In the present study, waste stone wool (SW) and glass wool (GW) in the form received, without removing the binder, were evaluated for their potential use in alkali activation technology. It was confirmed that both can be used in the preparation of alkali-activated materials (AAMs), whether cured at room temperature or at an elevated temperature in order to speed up the reaction. The results show that it is possible to obtain a compressive strength of over 50 MPa using SW or GW as a precursor. A strength of 53 MPa was obtained in AAM based on GW after curing for 3 days at 40 °C, while a similar compressive strength (58 MPa) was achieved after curing the GW mixture for 56 days at room temperature. In general, the mechanical properties of samples based on GW are better than those based on SW. The evolution of mechanical properties and recognition of influential parameters were determined by various microstructural analyses, including XRD, SEM, MIP, and FTIR. The type of activator (solely NaOH or a combination of NaOH and sodium silicate), and the SiO2/Na2O and liquid to solid (L/S) ratios were found to be the significant parameters. A lower SiO2/Na2O ratio and low L/S ratio significantly improve the mechanical strength of AAMs made from both types of mineral wool.
Keywords: alkali activation, waste mineral wool, mechanical strength
Published in DiRROS: 31.07.2023; Views: 242; Downloads: 231
.pdf Full text (9,79 MB)
This document has many files! More...

5.
Influence of microwaves in the early stage of alkali activation on the mechanical strength of alkali-activated materials
Barbara Horvat, Majda Pavlin, Vilma Ducman, 2023, original scientific article

Abstract: This study focuses on the influence of microwave irradiation dosimetry on alkali-activated slurry in its early stages. The impact on the chemistry and mineralogy along with the mechanical properties were evaluated by changing the power of microwaves and their duration of exposure. This influenced the dissolution of amorphous content, diffusion, and self-assembly into an aluminosilicate network. The precursors used in this study were metakaolin, a non-waste material commonly used in geopolymerisation technology, and local fly ash and ladle furnace slag as secondary materials. Furthermore, they were chemically and mineralogically analysed, and their mixtures with NaOH and Na-water glass provided the optimal ratio of the amount of elements obtained using the pre-calculation approach. However, the potential extra addition of water was experimentally determined to allow complete wetting of the material and solid workability during moulding. Using Fourier-transform infrared spectroscopy, the influence of water was further investigated in alkali-activated slag and fly ash irradiated with microwaves, which resulted in the highest values of mechanical strength in the dosimetry-mapping part of the analysis. In addition to the time dependence of the expected mechanical strength on the ageing of the alkali- activated material, the synthesised material exhibited a significant dependence on the dose of microwave irra- diation, which was different for every precursor as well as every mixture with different chemistries.
Keywords: odpadni material, alkalijska aktivacija, obsevanje z mikrovalovi, mehanska trdnost, waste material, alkali activation, microwave irradiation, mechanical strength
Published in DiRROS: 12.07.2023; Views: 360; Downloads: 271
.pdf Full text (8,99 MB)
This document has many files! More...

6.
Preparation of façade panels based on alkali-activated waste mineral wool, their characterization and durability aspects
Majda Pavlin, Barbara Horvat, Vilma Ducman, 2022, original scientific article

Abstract: Mineral wool is a widely used insulation material and one of the largest components of construction and demolition waste, yet it mainly ends up in landfills. In this work, we explored the potential recycling of waste stone wool in the pilot production of alkali-activated façade panels. The current work shows mechanical properties, SEM-EDS and mercury intrusion porosimetry analyses for three different mix designs used for the preparation of façade panels. They are all composed of waste stone wool and differ in the amount of co-binders (local slag, lime, metakaolin and/or fly ash) selected by the preliminary studies. In this study, co-binders were added to increase early strength and improve the mechanical properties and freeze-thaw resistance. The mechanical properties of each were measured up to 256 days, different durability tests were executed, and, by evaluating the mechanical properties, microstructure and workability of the mortar, the most suitable mix was selected to be used for pilot production. In addition, the leaching test of the selected mixture showed no exceeded toxic trace elements and therefore got classified as non-hazardous waste after its use.
Keywords: alkali activation, waste mineral wool, SEM, XRF, XRD, mechanical strength
Published in DiRROS: 19.06.2023; Views: 317; Downloads: 141
.pdf Full text (1,27 MB)
This document has many files! More...

7.
The preparation and characterization of low-temperature foams based on the alkali activation of waste stone wool
Majda Pavlin, Barbara Horvat, Mark Češnovar, Vilma Ducman, 2022, original scientific article

Abstract: Waste mineral wool represents a huge amount of construction and demolition waste that is still not adequately returned into the value chain but needs to be landfilled. In the present study, waste stone wool (SW) was evaluated for the preparation of alkali-activated foams. For this purpose SW was milled and sieved below 63 μm, then the activator (sodium silicate) and different amounts of foaming agent (hydrogen peroxide, H2O2), varying between 1 wt% and 3 wt%, were added to the slurry and cured in moulds at an elevated temperature (70 ◦ C) for three days. In this way, foamed, highly porous materials were obtained whose density and mechanical properties were influenced by the amount of foaming agent used. The densities obtained ranged between 1.4 and 0.5 g/cm3, with corresponding mechanical properties of between 12.6 and 1.5 MPa and total porosities in the range 37.8–78.6%, respectively. In the most porous samples with the total porosity of 78.6%, a thermal conductivity of 0.092 W/(m∙K) was confirmed. The study confirmed the suitability of waste mineral wool (in our case SW) as a precursor for alkali-activated foams with potential use in the construction sector or other industrial applications.
Keywords: alkali activation, waste mineral wool, mechanical strength, open access, alkalijska aktivacija, odpadna volna, SEM, XRF, XRD, mehanska trdnost, odprti dostop
Published in DiRROS: 19.06.2023; Views: 265; Downloads: 205
.pdf Full text (9,47 MB)
This document has many files! More...

Search done in 0.22 sec.
Back to top