Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "author" (Vilma Ducman) .

51 - 55 / 55
First pagePrevious page123456Next pageLast page
51.
Clay rich river sediments calcined into precursors for alkali activated materials
Lea Žibret, Wolfgang Wisniewski, Barbara Horvat, Mojca Božič, Boštjan Gregorc, Vilma Ducman, 2023, original scientific article

Abstract: Alkali activated materials (AAMs), a potential alternative to cement-based products or ceramics, can incorporate large amounts of currently landfilled aluminosilicate rich materials such as calcined clay-rich river sediments collected at hydropower plant dams. Untreated fresh sediment and untreated aged sediment intended to serve as AAM precursors were calcined to increase their amorphous content, then activated by Na or K-based silicate or hydroxide solutions and cured at 60 ◦C for three days. Up to 30 mass % (ma%) of fly ash (FA) or ladle slag (LS) increased the mechanical performance. The phase composition and microstructure are analyzed using X-ray diffraction, fourier-transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and mercury intrusion porosimetry to gain further insight into how the additives influence the final properties of the resulting AAMs. The main crystalline components of the prepared AAMs are quartz, illite/muscovite and feldspar. The amorphous content reaches up to 52.5 ma% in the Na-activated AAMs and up to 48.8 ma% in K-activated AAMs. The acquired results confirm the suitability of the investigated sediments as sole precursors for AAMs. The mechanical properties of the AAMs can be improved by adding FA and/or LS.
Keywords: sediments, alkali activated materials, properties
Published in DiRROS: 30.05.2023; Views: 317; Downloads: 249
.pdf Full text (4,71 MB)
This document has many files! More...

52.
Antibacterial properties and cytotoxicity of 100% waste derived alkali activated materials : slags and stone wool-based binders
Caterina Sgarlata, Giovanni Dal Poggetto, Federica Piccolo, Michelina Catauro, Katja Traven, Mark Češnovar, Hoang Nguyen, Juho Yliniemi, Luisa Barbieri, Vilma Ducman, Isabella Lancellotti, Cristina Leonelli, 2021, original scientific article

Abstract: In this study we compare the leaching behavior and the antibacterial and cytotoxic properties of 100% slag or stone wool derived alkali activated materials. The antibacterial activity was measured as the inhibiting capacity against two Gram- negative bacterial strains, Escherichia coli and Pseudomonas aeruginosa and one Gram-positive bacterial strain: Enterococcus faecalis. The cytotoxicity properties were tested on mouse embryonic fibroblast NIH-3T3 cell-line. It was proved that the high quality of the 3D aluminosilicate network of the consolidated materials obtained from powders of CaO or MgO-rich slags or stone wool, opportunely activated with NaO and/or Na-silicate, was capable of stabilizing heavy metal cations. The concentrations of leachate heavy cations were lower than the European law limit when tested in water. The effect of additives in the composites, basal fibers or nanocellulose, did not reduce the chemical stability and slightly influenced the compressive strength. Weight loss in water increased by 20% with basalt fibers addition, while it remained almost constant when nanocellulose was added. All the consolidated materials, cement-like in appearance, exhibited limited antibacterial properties (viability from 50 to 80% depending on the bacterial colony and the amount of sample) and absence of cytotoxicity, envisaging good acceptance from part of the final consumer and zero ecological impact. CaO-rich formulations can replace ordinary Portland cement (showing bacterial viability at 100%) with a certain capability for preventing the reproduction of the E. coli and S. aureus bacteria with health and environmental protection results.
Keywords: antibacterial properties, cytotoxicity, alkali-activated materials, slag, stone wool, waste utilization, social acceptance
Published in DiRROS: 22.05.2023; Views: 336; Downloads: 185
.pdf Full text (2,31 MB)
This document has many files! More...

53.
Alkali activation of metallurgical slags : reactivity, chemical behavior, and environmental assessment
Isabella Lancellotti, Federica Piccolo, Katja Traven, Mark Češnovar, Vilma Ducman, Cristina Leonelli, 2021, original scientific article

Abstract: Alkali-activated materials (AAMs) represent a promising alternative to conventional building materials and ceramics. Being produced in large amounts as aluminosilicate-rich secondary products, such as slags, they can be utilized for the formulation of AAMs. Slags are partially crystalline metallurgical residues produced during the high temperature separation of metallic and non-metallic materials in the steelmaking processes. In the present study, the electric arc furnace carbon or stainless steel slag (EAF) and secondary metallurgical slag such as ladle furnace basic slag (LS) were used as precursors in an alkali-activation process. EAF slag, with its amorphous fraction of about 56%, presented higher contents of soluble Si and Al species with respect to ladle slag R (35%). However, both are suitable to produce AAM. The leaching behavior shows that all the release values are below the regulation limit. All the bivalent ions (Ba, Cd, Cu, Ni, Pb, and Zn) are well immobilized in a geopolymeric matrix, while amphoteric elements, such as As and Cr, show a slight increase of release with respect to the corresponding slag in alkaline and aqueous environments. In particular, for Sb and As of AAM, release still remains below the regulation limits, while Mo presents an increase of leaching values that slightly exceeds the limit for landfill non-dangerous waste.
Keywords: slag, aluminosilicate materials, chemical reactivity, cold consolidation, alkali activation, leaching test, open access
Published in DiRROS: 22.05.2023; Views: 357; Downloads: 180
.pdf Full text (4,49 MB)
This document has many files! More...

54.
Production and characterization of lightweight aggregates from municipal solid waste incineration fly-ash through single- and double-step pelletization process
Alberto Ferraro, Vilma Ducman, Francesco Colangelo, Lidija Korat, Danilo Spasiano, Ilenia Farina, 2023, original scientific article

Abstract: The performance of a cold-bonding pelletization process was investigated for lightweight aggregates (LWAs) production from municipal solid waste incineration (MSWI) fly-ash (FA), by including multiple waste materials in the aggregate mixture. Before pelletization, FA was pre-treated by washing with water, which led to a reduction of chloride (66.79%) and sulphate (25.30%) content. This was further confirmed by XRF and XRD analyses, which showed a reduction of chloride elements and the content of chlorine crystalline phases. The pelletization process was carried out using both single- and double-step methods. For single-step pelletization, all the mixtures contained 80% FA, combined with various compositions of cement (5, 10, and 15%) and granulated blast furnace slag (GBFS) (5, 10, and 15%). For the double-step pelletization 30% of cement and 70% of marble sludge (MS) were added to each of the previous mixtures. The apparent density of all the aggregates varied between 1.60 and 1.87 g cm 3, suggesting their suitability to be classified as LWAs. Aggregates produced from double-step pelletization showed improved characteristics, with water absorption capacity and open porosity generally lower compared to the corresponding aggregates from the single-step pelletization. The best values of compressive (crushing) strength (almost 11 MPa) were observed for double-step pelletization aggregates with initial cement: GBFS mixture of 15%:5%. Results from leaching tests showed an overall significant release of chloride and sulphate. Nevertheless, leaching from double-step pelletization aggregates was reduced by 1.73- 4.02 times for chloride and 1.58-5.67 times for sulphate, further suggesting that better performances are achievable through the addition of an aggregate second layer.
Keywords: MSWI fly ash, lightweight aggregate, microtomography, open access
Published in DiRROS: 03.05.2023; Views: 351; Downloads: 301
.pdf Full text (8,90 MB)
This document has many files! More...

55.
The effect of the addition of construction & demolition waste on the properties of clay-based ceramics
Biljana Angjusheva, Vilma Ducman, Emilija Fidanchevski, 2022, original scientific article

Abstract: Waste glass and reclaimed brick are types of construction and demolition waste (C&DW) that could potentially be used as secondary raw materials in the production of ceramics. Ceramics based on clay, waste demolished brick (5-15 wt.%) and waste glass (5-20 wt.%) were produced by pressing (P = 68 MPa) and subsequently sintered at 900, 950, 1000, and 1050 ° C for one hour. The physical and mechanical properties of the ceramics obtained were evaluated. The addition of demolished brick decreased the density and mechanical properties of the clay specimens and increased the water absorption. The incorporation of waste glass improved the sintering behavior and its mechanical properties. The addition of 20 wt.% waste glass and 10 wt.% waste demolished brick into the clay matrix improved the flexural strength by up to 20.6 % and decreased the water absorption by up to 22 %. The approach presented promotes an opportunity to recycle construction and demolition waste into alternative resource materials, and represents a positive contribution to the environment.
Keywords: CDW, ceramics, properties
Published in DiRROS: 25.04.2023; Views: 364; Downloads: 185
.pdf Full text (1,85 MB)
This document has many files! More...

Search done in 0.2 sec.
Back to top