Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "author" (Uroš Bohinc) .

1 - 3 / 3
First pagePrevious page1Next pageLast page
1.
Comprehensive permanent remote monitoring system of a multi-span highway bridge
Andrej Anžlin, Uroš Bohinc, Doron Hekič, Maja Kreslin, Jan Kalin, Aleš Žnidarič, 2021, published scientific conference contribution

Abstract: As part of the reconstruction of a multi-span viaduct on a Slovenian highway, a permanent remote monitoring system with over 200 sensors was established. Several parameters are monitored on different parts of the viaduct by means of temperature sensors, accelerometers, strain gauges, long-gauge deformation and Fibre Bragg Grating (FBG) sensors. In this way strains, frequencies and temperatures on external prestressed beam cables, carbon fibre rebarsused for the flexural strengthening of a deck overhang, pier caps and prestressed beams are measured and stored into the on-site central data acquisition system. This paper presents architecture of the permanent bridge monitoring system and preliminary results of the measurements.
Keywords: permanent monitoring, structural health monitoring, bridge WIM, sensors, viaduct
Published in DiRROS: 22.01.2024; Views: 248; Downloads: 115
.pdf Full text (9,29 MB)
This document has many files! More...

2.
Getting more out of existing structures
Martín-Sanz Henar, Konstantinos Tatsis, Domagoj Damjanovic, Irina Stipanović, Aljoša Šajna, Ivan Duvnjak, Uroš Bohinc, Eugen Brühwiler, Eleni Chatzi, 2019, original scientific article

Abstract: Ultra-high-performance fiber-reinforced cement-based composite (UHPFRC) has been increasingly adopted for rehabilitation projects over the past two decades, proving itself as a reliable, cost-efficient and sustainable alternative against conventional methods. High compressive strength, low permeability and high ductility are some of the characteristics that render UHPFRC an excellent material for repairing existing aged infrastructure. UHPFRC is most commonly applied as a surface layer for strengthening and rehabilitating concrete structures such as bridge decks or building slabs. However, its implementation with steel structures has so far been limited. In this work, the UHPFRC strengthening of a steel bridge is investigated both in simulation as well as in the laboratory, by exploiting a real-world case study: the Buna Bridge. This Croatian riveted steel bridge, constructed in 1893, repaired in 1953, and decommissioned since 2010, was removed from its original location and transported to laboratory facilities for testing prior to and after rehabilitation via addition of UHPFRC slab. The testing campaign includes static and dynamic experiments featuring state-of-the-art monitoring systems such as embedded fiber optics, acoustic emission sensors and digital image correlation. The information obtained prior to rehabilitation serves for characterization of the actual condition of the structure and allows the design of the rehabilitation solution. The UHPFRC slab thickness was optimized to deliver optimal fatigue and ultimate capacity improvement at reasonable cost. Once the design was implemented, a second round of experiments was conducted in order to confirm the validity of the solution, with particular attention allocated to the interface between the steel substrate and the UHPFRC overlay, as the connection between both materials may result in a weak contact point. A detailed fatigue analysis, based on updated FEM models prior to and after strengthening, combined with the results of a reliability analysis prove the benefits of adoption of such a solution via the significant extension of the structural lifespan.
Keywords: bridge, steel, UHPFRC, structures
Published in DiRROS: 21.12.2023; Views: 204; Downloads: 80
.pdf Full text (10,84 MB)
This document has many files! More...

3.
Računski model za opis temperaturnega vpliva na meritve deformacij
Uroš Bohinc, 2022, original scientific article

Abstract: V prispevku je predstavljen izviren način za napoved odvisnosti izmerjenih deformacij od temperature okolice. Izhaja iz poenostavljenega fizikalnega modela, ki je umerjen s pomočjo niza obstoječih meritev, ki pokrivajo časovni razpon enega leta. Spremljanje konstrukcijskega stanja zvonika stolnice sv. Anastazije v Zadru je bilo opravljeno z namenom, da bi zanesljivo določili morebitne dolgotrajne trende obnašanja in tako omogočili pravočasno ukrepanje. Za uspešno določitev dolgotrajnih trendov je ključna ločitev temperaturnega vpliva na meritve. Rezultati kažejo, da je mogoče na predstavljeni način dokaj dobro izločiti temperaturni vpliv na meritve in tako izboljšati zaznavo morebitnih dolgotrajnih trendov.
Keywords: meritve deformacij, modeliranje temperaturnega vpliva, spremljanje konstrukcijskega stanja
Published in DiRROS: 04.12.2023; Views: 181; Downloads: 98
.pdf Full text (2,71 MB)
This document has many files! More...

Search done in 0.12 sec.
Back to top