Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "author" (Sebastijan Robič) .

1 - 2 / 2
First pagePrevious page1Next pageLast page
1.
Experimental carbonation study for durability assessment of novel cementitious materials
Sebastijan Robič, Aljoša Šajna, Lucija Hanžič, Alisa Machner, Marie Helene Bjørndal, Klaartje De Weerdt, Yushan Gu, Benoit Bary, Rosamaria Lample, 2021, published scientific conference contribution

Abstract: The design process of concrete structures is carried out using standards and guidelines, while the durability predictions of concrete structures is supported only with exposure classes and experience-based requirements. To improve durability predictions of the carbonation resistance of concrete, a numerical model is being developed within the Horizon 2020 project EnDurCrete, coupling the rate of carbonation, and the drying rate. To verify the numerical model, an accelerated carbonation study was carried out. Experiments were conducted on mortars incorporating a novel CEM II/C (S-LL) cement, developed within the EnDurCrete project, and a commercially available reference cementCEM II/A-S. EnDurCrete mortars (EnM) and reference mortars (RefM) were prepared with water-cement ratios of 0.6 and 0.5 (denoted with label extensions -06 and -05). Visual assessments and thermogravimetric analysis (TGA) were used to measure the carbonation rates, which were found to be ~1.0 mm day-0.5 in EnM-06 and ~0.6 mm day-0.5 in RefM-06, while in EnM-05 and RefM-05 the values were ~0.7 and ~0.2 mm day-0.5 respectively. Additionally, TGA shows that the initial portlandite (CH) content is ~1.5 wt% in EnM-06 as opposed to ~3.0 wt% in RefM-06. The difference in the initial CH content in the two hydrated binders might explain the difference in their carbonation rate. During the moisture transport experiments a gravimetric method was used to determine mass changes as specimens underwent drying and resaturation with and without CO2 present. The drying led to a decrease in mass, but in the presence of CO2 this mass loss was compensated by the mass gain due to uptake of CO2 during carbonation. The resaturation experiments indicate an increase in the suction porosity in the carbonated samples compared to the non-carbonated samples.
Keywords: concrete, absorption of water, carbonation, durability assessment, model verification
Published in DiRROS: 25.01.2024; Views: 168; Downloads: 119
.pdf Full text (9,29 MB)
This document has many files! More...

2.
Experimental carbonation study for a durability assessment of novel cementitious materials
Lucija Hanžič, Sebastijan Robič, Alisa Machner, Marie Helene Bjørndal, Klaartje De Weerdt, Yushan Gu, Benoit Bary, Rosa Maria Lample Carreras, Aljoša Šajna, 2021, original scientific article

Abstract: Durability predictions of concrete structures are derived from experience-based require- ments and descriptive exposure classes. To support durability predictions, a numerical model related to the carbonation resistance of concrete was developed. The model couples the rate of carbonation with the drying rate. This paper presents the accelerated carbonation and moisture transport exper- iments performed to calibrate and verify the numerical model. They were conducted on mortars with a water-cement ratio of either 0.6 or 0.5, incorporating either a novel cement CEM II/C (S-LL) (EnM group) or commercially available CEM II/A-S cement (RefM group). The carbonation rate was determined by visual assessment and thermogravimetric analysis (TGA). Moisture transport experi- ments, consisting of drying and resaturation, utilized the gravimetric method. Higher carbonation rates expressed in mm/day−0.5 were found in the EnM group than in the RefM group. However, the TGA showed that the initial portlandite (CH) content was lower in the EnM than in the RefM, which could explain the difference in carbonation rates. The resaturation experiments indicate an increase in the suction porosity in the carbonated specimens compared to the non-carbonated specimens. The study concludes that low clinker content causes lower resistance to carbonation, since less CH is available in the surface layers; thus, the carbonation front progresses more rapidly towards the core.
Keywords: mortar, absorption of water, carbonation, durability assessment, model verification
Published in DiRROS: 05.07.2023; Views: 287; Downloads: 176
.pdf Full text (4,84 MB)
This document has many files! More...

Search done in 0.1 sec.
Back to top