Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "author" (Jona Veber) .

1 - 1 / 1
First pagePrevious page1Next pageLast page
1.
Effect of sucrose concentration on streptococcus mutans adhesion to dental material surfaces
Anamarija Zore, Franc Rojko, Nives Matijaković Mlinarić, Jona Veber, Aleksander Učakar, Roman Štukelj, Andreja Pondelak, Andrijana Sever Škapin, Klemen Bohinc, 2024, original scientific article

Abstract: Enamel demineralization, known as dental caries, is instigated by the bacterium Streptococcus mutans, which generates acid during carbohydrate metabolism. Among carbohydrates, sucrose is the most cariogenic and capable of biofilm formation. This study aimed to explore and comprehend Streptococcus mutans’ adherence to two prevalent dental material surfaces, i.e., a cobalt–chromium(Co-Cr) alloy and a resin-based composite, under the influence of various sucrose concentrations. To understand bacterial adhesion, the surfaces were characterized using profilometry, tensiometry, and surface charge measurements. Bacterial adhesion was evaluated using scanning electron microscopy and crystal violet dye methods. Results revealed that the composite surface exhibited greater rough-ness compared with the Co-Cr alloy surface. Both surfaces displayed hydrophilic properties and a negative surface charge. Bacterial adhesion experiments indicated lower bacterial adherence to the Co-Cr alloy than to the composite surface before the addition of sucrose. However, the introduction of sucrose resulted in biofilm development on both surfaces, showcasing a similar increase in bacterial adhesion, with the highest levels being observed at a 5% sucrose concentration in the bacterial suspension. In conclusion, the findings suggest sucrose-rich foods could facilitate bacterial adaptation despite less favorable surface characteristics, thereby promoting biofilm formation.
Keywords: bacterial adhesion, streptococcus mutans, dental material surfaces, sucrose concentration
Published in DiRROS: 31.01.2024; Views: 187; Downloads: 71
.pdf Full text (4,28 MB)
This document has many files! More...

Search done in 0.07 sec.
Back to top