Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "author" (Denis Kutnjak) .

1 - 3 / 3
First pagePrevious page1Next pageLast page
1.
Identification of epigenetically regulated genes involved in plant-virus interaction and their role in virus-triggered induced resistance
Régis L. Corrêa, Denis Kutnjak, Silvia Ambrós, Mónica Bustos, Santiago F. Elena, 2024, original scientific article

Abstract: Background: Plant responses to a wide range of stresses are known to be regulated by epigenetic mechanisms. Path-ogen-related investigations, particularly against RNA viruses, are however scarce. It has been demonstrated that Arabi-dopsis thaliana plants defective in some members of the RNA-directed DNA methylation (RdDM) or histone modi-fication pathways presented differential susceptibility to the turnip mosaic virus. In order to identify genes directly targeted by the RdDM-related RNA Polymerase V (POLV ) complex and the histone demethylase protein JUMONJI14 (JMJ14) during infection, the transcriptomes of infected mutant and control plants were obtained and integrated with available chromatin occupancy data for various epigenetic proteins and marks. Results: A comprehensive list of virus-responsive gene candidates to be regulated by the two proteins was obtained. Twelve genes were selected for further characterization, confirming their dynamic regulation during the course of infection. Several epigenetic marks on their promoter sequences were found using in silico data, raising confidence that the identified genes are actually regulated by epigenetic mechanisms. The altered expression of six of these genes in mutants of the methyltransferase gene CURLY LEAF and the histone deacetylase gene HISTONE DEACETYLASE 19 suggests that some virus-responsive genes may be regulated by multiple coordinated epigenetic complexes. A temporally separated multiple plant virus infection experiment in which plants were transiently infected with one virus and then infected by a second one was designed to investigate the possible roles of the identified POLV- and JMJ14-regulated genes in wild-type (WT ) plants. Plants that had previously been stimulated with viruses were found to be more resistant to subsequent virus challenge than control plants. Several POLV- and JMJ14-regulated genes were found to be regulated in virus induced resistance in WT plants, with some of them poisoned to be expressed in early infection stages. Conclusions: A set of confident candidate genes directly regulated by the POLV and JMJ14 proteins during virus infection was identified, with indications that some of them may be regulated by multiple epigenetic modules. A sub-set of these genes may also play a role in the tolerance of WT plants to repeated, intermittent virus infections.Keywords Biotic stress, Defense priming, Epigenetics, Histone modifications, Induced resistance, Potyvirus, RNA-directed DNA methylation.
Keywords: biotic stress, defense priming, epigenetics, histone modifications, induced resistance, Potyvirus, RNA-directed DNA methylation
Published in DiRROS: 17.05.2024; Views: 14; Downloads: 4
URL Link to file
This document has many files! More...

2.
Virome analysis of irrigation water sources provides extensive insights into the diversity and distribution of plant viruses in agroecosystems
Olivera Maksimović, Katarina Bačnik, Mark Paul Selda Rivarez, Ana Vučurović, Nataša Mehle, Maja Ravnikar, Ion Gutiérrez-Aguirre, Denis Kutnjak, 2024, original scientific article

Abstract: Plant viruses pose a significant threat to agriculture. Several are stable outside their hosts, can enter water bodies and remain infective for prolonged periods of time. Even though the quality of irrigation water is of increasing importance in the context of plant health, the presence of plant viruses in irrigation waters is understudied. In this study, we conducted a large-scale high-throughput sequencing (HTS)-based virome analysis of irrigation and surface water sources to obtain complete information about the abundance and diversity of plant viruses in such waters. We detected nucleic acids of plant viruses from 20 families, discovered several novel plant viruses from economically important taxa, like Tobamovirus and observed the influence of the water source on the present virome. By comparing viromes of water and surrounding plants, we observed presence of plant viruses in both compartments, especially in cases of large-scale outbreaks, such as that of tomato mosaic virus. Moreover, we demonstrated that water virome data can extensively inform us about the distribution and diversity of plant viruses for which only limited information is available from plants. Overall, the results of the study provided extensive insights into the virome of irrigation waters from the perspective of plant health. It also suggested that an HTS-based water virome surveillance system could be used to detect potential plant disease outbreaks and to survey the distribution and diversity of plant viruses in the ecosystem.
Keywords: plant viruses, environmental water testing, high-throughput sequencing, agroecosystems, irrigation water, virome
Published in DiRROS: 29.03.2024; Views: 158; Downloads: 69
URL Link to file
This document has many files! More...

3.
In-depth study of tomato and weed viromes reveals undiscovered plant virus diversity in an agroecosystem
Mark Paul Selda Rivarez, Anja Pecman, Katarina Bačnik, Olivera Maksimović, Ana Vučurović, Gabrijel Seljak, Nataša Mehle, Ion Gutiérrez-Aguirre, Maja Ravnikar, Denis Kutnjak, 2023, original scientific article

Abstract: Background: In agroecosystems, viruses are well known to influence crop health and some cause phytosanitary and economic problems, but their diversity in non-crop plants and role outside the disease perspective is less known. Extensive virome explorations that include both crop and diverse weed plants are therefore needed to better understand roles of viruses in agroecosystems. Such unbiased exploration is available through viromics, which could generate biological and ecological insights from immense high-throughput sequencing (HTS) data. Results: Here, we implemented HTS-based viromics to explore viral diversity in tomatoes and weeds in farming areas at a nation-wide scale. We detected 125 viruses, including 79 novel species, wherein 65 were found exclusively in weeds. This spanned 21 higher-level plant virus taxa dominated by Potyviridae, Rhabdoviridae, and Tombusviridae, and four non-plant virus families. We detected viruses of non-plant hosts and viroid-like sequences and demonstrated infectivity of a novel tobamovirus in plants of Solanaceae family. Diversities of predominant tomato viruses were variable, in some cases, comparable to that of global isolates of the same species. We phylogenetically classified novel viruses and showed links between a subgroup of phylogenetically related rhabdoviruses to their taxonomically related host plants. Ten classified viruses detected in tomatoes were also detected in weeds, which might indicate possible role of weeds as their reservoirs and that these viruses could be exchanged between the two compartments. Conclusions: We showed that even in relatively well studied agroecosystems, such as tomato farms, a large part of very diverse plant viromes can still be unknown and is mostly present in understudied non-crop plants. The overlapping presence of viruses in tomatoes and weeds implicate possible presence of virus reservoir and possible exchange between the weed and crop compartments, which may influence weed management decisions. The observed variability and widespread presence of predominant tomato viruses and the infectivity of a novel tobamovirus in solanaceous plants, provided foundation for further investigation of virus disease dynamics and their effect on tomato health. The extensive insights we generated from such in-depth agroecosystem virome exploration will be valuable in anticipating possible emergences of plant virus diseases and would serve as baseline for further post-discovery characterization studies.
Keywords: tomato, weed, virus, viroid, virome, virus discovery, virus diversity, phylogenetics, metagenomics, viromics
Published in DiRROS: 13.04.2023; Views: 625; Downloads: 137
URL Link to file

Search done in 0.09 sec.
Back to top