Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "author" (Zagorščak Maja) .

1 - 4 / 4
First pagePrevious page1Next pageLast page
1.
Evidence-based unification of potato gene models with the UniTato collaborative genome browser
Maja Zagorščak, Jan Zrimec, Carissa Bleker, Nadja Francesca Nolte, Mojca Juteršek, Živa Ramšak, Kristina Gruden, Marko Petek, 2024, original scientific article

Abstract: Potato (Solanum tuberosum) is the most popular tuber crop and a model organism. A variety of gene models for potato exist, and despite frequent updates, they are not unified. This hinders the comparison of gene models across versions, limits the ability to reuse experimental data without significant re-analysis, and leads to missing or wrongly annotated genes. Here, we unify the recent potato double monoploid v4 and v6 gene models by developing an automated merging protocol, resulting in a Unified poTato genome model (UniTato). We subsequently established an Apollo genome browser (unitato.nib.si) that enables public access to UniTato and further community-based curation. We demonstrate how the UniTato resource can help resolve problems with missing or misplaced genes and can be used to update or consolidate a wider set of gene models or genome information. The automated protocol, genome annotation files, and a comprehensive translation table are provided at github.com/NIB-SI/unitato.
Keywords: bioinformatics analysis, plant genome annotation, gene model annotations, Phureja group, GFF files, poTato genome model, UniTato
Published in DiRROS: 11.06.2024; Views: 36; Downloads: 39
.pdf Full text (2,48 MB)
This document has many files! More...

2.
Stress knowledge map : a knowledge graph resource for systems biology analysis of plant stress responses
Carissa Bleker, Živa Ramšak, Andras Bittner, Vid Podpečan, Maja Zagorščak, Bernhard Wurzinger, Špela Baebler, Marko Petek, Maja Križnik, Anže Županič, Kristina Gruden, 2024, original scientific article

Abstract: Stress Knowledge Map (SKM; https://skm.nib.si) is a publicly available resource containing two complementary knowledge graphs that describe the current knowledge of biochemical, signaling, and regulatory molecular interactions in plants: a highly curated model of plant stress signaling (PSS; 543 reactions) and a large comprehensive knowledge network (488 390 interactions). Both were constructed by domain experts through systematic curation of diverse literature and database resources. SKM provides a single entry point for investigations of plant stress response and related growth trade-offs, as well as interactive explorations of current knowledge. PSS is also formulated as a qualitative and quantitative model for systems biology and thus represents a starting point for a plant digital twin. Here, we describe the features of SKM and show, through two case studies, how it can be used for complex analyses, including systematic hypothesis generation and design of validation experiments, or to gain new insights into experimental observations in plant biology.
Keywords: Stress knowledge map, knowledge graph, knowledge network, entry point, plant digital twin, plant stress responses, plant signaling, systems biology
Published in DiRROS: 11.06.2024; Views: 34; Downloads: 24
.pdf Full text (1,35 MB)
This document has many files! More...

3.
4.
Candidate pathogenicity factor/effector proteins of ‘Candidatus Phytoplasma solani’ modulate plant carbohydrate metabolism, accelerate the ascorbate–glutathione cycle, and induce autophagosomes
Marina Dermastia, Špela Tomaž, Rebeka Strah, Tjaša Lukan, Anna Coll Rius, Barbara Dušak, Timotej Čepin, Aleš Kladnik, Maja Zagorščak, Kristina Gruden, Maruša Pompe Novak, 2023, original scientific article

Abstract: The pathogenicity of intracellular plant pathogenic bacteria is associated with the action of pathogenicity factors/effectors, but their physiological roles for most phytoplasma species, including ‘Candidiatus Phytoplasma solani’ are unknown. Six putative pathogenicity factors/effectors from six different strains of ‘Ca. P. solani’ were selected by bioinformatic analysis. The way in which they manipulate the host cellular machinery was elucidated by analyzing Nicotiana benthamiana leaves after Agrobacterium-mediated transient transformation with the pathogenicity factor/effector constructs using confocal microscopy, pull-down, and co-immunoprecipitation, and enzyme assays. Candidate pathogenicity factors/effectors were shown to modulate plant carbohydrate metabolism and the ascorbate–glutathione cycle and to induce autophagosomes. PoStoSP06, PoStoSP13, and PoStoSP28 were localized in the nucleus and cytosol. The most active effector in the processes studied was PoStoSP06. PoStoSP18 was associated with an increase in phosphoglucomutase activity, whereas PoStoSP28, previously annotated as an antigenic membrane protein StAMP, specifically interacted with phosphoglucomutase. PoStoSP04 induced only the ascorbate–glutathione cycle along with other pathogenicity factors/effectors. Candidate pathogenicity factors/effectors were involved in reprogramming host carbohydrate metabolism in favor of phytoplasma own growth and infection. They were specifically associated with three distinct metabolic pathways leading to fructose-6-phosphate as an input substrate for glycolysis. The possible significance of autophagosome induction by PoStoSP28 is discussed.
Keywords: autophagosome, effector, glycolysis, pathogenicity factor, StAMP
Published in DiRROS: 24.08.2023; Views: 559; Downloads: 255
.pdf Full text (7,84 MB)
This document has many files! More...

Search done in 0.31 sec.
Back to top