Digital repository of Slovenian research organisations

Show document
A+ | A- | Help | SLO | ENG

Title:The ▫$\sigma$▫-irregularity of trees with maximum degree ▫$5$▫
Authors:ID Dimitrov, Darko (Author)
ID Kovijanić-Vukićević, Žana (Author)
ID Popivoda, Goran (Author)
ID Sedlar, Jelena (Author)
ID Škrekovski, Riste (Author)
ID Vujošević, Saša (Author)
Files:URL URL - Source URL, visit https://www.sciencedirect.com/science/article/pii/S0166218X25006857
 
.pdf PDF - Presentation file, download (679,47 KB)
MD5: 376E48E44FF580DB7A28FE572333A1C8
 
Language:English
Typology:1.01 - Original Scientific Article
Organization:Logo RUDOLFOVO - Rudolfovo - Science and Technology Centre Novo Mesto
Abstract:The ▫$\sigma$▫-irregularity, a variant of the well-established Albertson irregularity, is a topological invariant defined for a graph ▫$G=(V,E)$▫ as ▫$\sigma (G) = \sum_{u,v \in E}(d(u) - d(v))^2$▫, where ▫$d(u)$▫ and ▫$d(v)$▫ denote the degrees of vertices ▫$u$▫ and ▫$v$▫, respectively. Recent research has successfully characterized chemical trees with the maximum ▫$\sigma$▫-irregularity. In this paper, we expand upon this research by establishing several structural properties of maximal trees with prescribed maximum degree ▫$\Delta$▫. Application of these properties enables us to characterize maximal trees with ▫$\Delta = 5$▫. We establish that extremal trees contain only vertices of degrees ▫$1$▫, ▫$2$▫ and ▫$\Delta$▫. Moreover, the number of edges with both end-vertices having the degree ▫$2$▫ or ▫$\Delta$▫ is very small, so almost all edges have the (second) maximum possible contribution to ▫$\sigma$▫-irregularity. We believe this property or similar should extend to maximal trees for any value of ▫$\Delta$▫, so this is an interesting direction for further research.
Keywords:regular graph, trees, maximum degree, [sigma]-irregularity, maximal graphs, graph measure, topological index
Publication status:Published
Publication version:Version of Record
Publication date:01.03.2026
Publisher:Elsevier
Year of publishing:2026
Number of pages:str. 124-136
Numbering:Vol. 382
PID:20.500.12556/DiRROS-27405 New window
UDC:519.17
ISSN on article:0166-218X
DOI:10.1016/j.dam.2025.11.045 New window
COBISS.SI-ID:266933507 New window
Copyright:© 2025 The Authors
Note:Žana Kovijanić Vukićević, Goran Popivoda, Jelena Sedlar, Riste Škrekovski, Saša Vujošević;
Publication date in DiRROS:05.02.2026
Views:57
Downloads:21
Metadata:XML DC-XML DC-RDF
:
Copy citation
  
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a journal

Title:Discrete applied mathematics
Shortened title:Discrete appl. math.
Publisher:Elsevier
ISSN:0166-218X
COBISS.SI-ID:25342464 New window

Document is financed by a project

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:P1-0383-2017
Name:Kompleksna omrežja

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:J1-3002-2021
Name:Prirejanja in barvanja povezav v kubičnih grafih

Funder:EC - European Commission
Project number:KK.01.1.1.02.0027
Name:Implementacijom suvremene znanstveno-istraživačke infrastrukture na FGAG do pametne specijalizacije u zelenoj i energetski učinkovitoj gradnji
Acronym:INFRA FGAG

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:BI-HR/25-27-004-2025
Name:Barvanja in razdalje v grafih

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:BI-ME/25-27-002-2025
Name:Nove perspektive v teoriji grafov: Raziskovanje novih in uveljavljenih mer nereregularnosti

Licences

License:CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.

Back