| Title: | Human intention recognition by deep LSTM and transformer networks for real-time human-robot collaboration |
|---|
| Authors: | ID Mavsar, Matija, Institut "Jožef Stefan" (Author) ID Simonič, Mihael, Institut "Jožef Stefan" (Author) ID Ude, Aleš, Institut "Jožef Stefan" (Author) |
| Files: | URL - Source URL, visit https://www.frontiersin.org/journals/robotics-and-ai/articles/10.3389/frobt.2025.1708987/full
PDF - Presentation file, download (5,71 MB) MD5: CAEAFF9578940192BCCB617D386F9090
|
|---|
| Language: | English |
|---|
| Typology: | 1.01 - Original Scientific Article |
|---|
| Organization: | IJS - Jožef Stefan Institute
|
|---|
| Abstract: | Collaboration between humans and robots is essential for optimizing the performance of complex tasks in industrial environments, reducing worker strain, and improving safety. This paper presents an integrated human-robot collaboration (HRC) system that leverages advanced intention recognition for real-time task sharing and interaction. By utilizing state-of-the-art human pose estimation combined with deep learning models, we developed a robust framework for detecting and predicting worker intentions. Specifically, we employed LSTM-based and transformer-based neural networks with convolutional and pooling layers to classify human hand trajectories, achieving higher accuracy compared to previous approaches. Additionally, our system integrates dynamic movement primitives (DMPs) for smooth robot motion transitions, collision prevention, and automatic motion onset/cessation detection. We validated the system in a real-world industrial assembly task, demonstrating its effectiveness in enhancing the fluency, safety, and efficiency of human-robot collaboration. The proposed method shows promise in improving real-time decision-making in collaborative environments, offering a safer and more intuitive interaction between humans and robots. |
|---|
| Keywords: | human-robot collaboration, deep neural networks, LSTM, transformer, intention recognition |
|---|
| Publication status: | Published |
|---|
| Publication version: | Version of Record |
|---|
| Submitted for review: | 19.09.2025 |
|---|
| Article acceptance date: | 26.11.2025 |
|---|
| Publication date: | 19.12.2025 |
|---|
| Publisher: | Frontiers |
|---|
| Year of publishing: | 2025 |
|---|
| Number of pages: | str. 1-15 |
|---|
| Numbering: | Vol. 12 |
|---|
| Source: | Švica |
|---|
| PID: | 20.500.12556/DiRROS-25143  |
|---|
| UDC: | 004.5 |
|---|
| ISSN on article: | 2296-9144 |
|---|
| DOI: | doi.org/10.3389/frobt.2025.1708987  |
|---|
| COBISS.SI-ID: | 263645187  |
|---|
| Copyright: | © 2025 Mavsar, Simonič and Ude. |
|---|
| Note: | Nasl. z nasl. zaslona;
Opis vira z dne 6. 1. 2026;
|
|---|
| Publication date in DiRROS: | 12.01.2026 |
|---|
| Views: | 99 |
|---|
| Downloads: | 47 |
|---|
| Metadata: |  |
|---|
|
:
|
Copy citation |
|---|
| | | | Share: |  |
|---|
Hover the mouse pointer over a document title to show the abstract or click
on the title to get all document metadata. |