Digital repository of Slovenian research organisations

Show document
A+ | A- | Help | SLO | ENG

Title:Parallels between quaternionic and matrix Nullstellensätze
Authors:ID Cimprič, Jaka (Author)
Files:.pdf PDF - Presentation file, download (743,39 KB)
MD5: F4EAECCF6EED05C52B883CF67091D0B1
 
URL URL - Source URL, visit https://www.sciencedirect.com/science/article/pii/S0021869325003278
 
Language:English
Typology:1.01 - Original Scientific Article
Organization:Logo IMFM - Institute of Mathematics, Physics, and Mechanics
Abstract:We prove a new quaternionic and a new matrix Nullstellensatz. We also show that both theories are intertwined. For every $g_1, \ldots, g_m, f \in {\mathbb H}[x_1, \ldots, x_d]$ (where $x_1, \ldots, x_d$ are central), we show that the following are equivalent: (a) For every $a \in {\mathbb H}^d$ whose components pairwise commute and which satisfies $g_1(a) = \cdots = g_m(a) = 0$, we have $f(a) = 0$. (b) $f$ belongs to the smallest semiprime left ideal containing $g_1, \ldots, g_m$. On the other hand, for every $G_1, \ldots, G_m, F \in M_n({\mathbb k}[x_1, \ldots, x_d])$, where ${\mathbb k}$ is an algebraically closed field, we show that the following are equivalent (where $I$ is the left ideal generated by $G_1, \ldots, G_m$): (a) For every $a \in {\mathbb k}^d$ and $v \in {\mathbb k}^n$ such that $G_1(a)v = \ldots = G_m(a)v = 0,$ we have $F(a)v = 0$. (b) For every $A \in M_n({\mathbb k})$ there exists $N \in \mathbb{N}_0$ such that $(AF)^N \in I + I(AF) + \ldots + I(AF)^N.$
Keywords:Hilbert's Nullstellensatz, matrix polynomials, quaternionic polynomials, one-sided ideals, free modules
Publication status:Published
Publication version:Version of Record
Publication date:01.11.2025
Year of publishing:2025
Number of pages:str. 92-108
Numbering:Vol. 682
PID:20.500.12556/DiRROS-23903 New window
UDC:512
ISSN on article:0021-8693
DOI:10.1016/j.jalgebra.2025.05.022 New window
COBISS.SI-ID:240581635 New window
Note:
Publication date in DiRROS:21.10.2025
Views:136
Downloads:76
Metadata:XML DC-XML DC-RDF
:
Copy citation
  
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a journal

Title:Journal of algebra
Shortened title:J. algebra
Publisher:Elsevier
ISSN:0021-8693
COBISS.SI-ID:1310986 New window

Document is financed by a project

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:P1-0222
Name:Algebra, teorija operatorjev in finančna matematika

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:J1-50002
Name:Realna algebraična geometrija v matričnih spremenljivkah

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:J1-60011
Name:Prirezani momentni problem prek realne algebraične geometrije

Licences

License:CC BY-NC 4.0, Creative Commons Attribution-NonCommercial 4.0 International
Link:http://creativecommons.org/licenses/by-nc/4.0/
Description:A creative commons license that bans commercial use, but the users don’t have to license their derivative works on the same terms.

Back