Digital repository of Slovenian research organisations

Show document
A+ | A- | Help | SLO | ENG

Title:Cross-positive linear maps, positive polynomials and sums of squares
Authors:ID Klep, Igor (Author)
ID Šivic, Klemen (Author)
ID Zalar, Aljaž (Author)
Files:.pdf PDF - Presentation file, download (1,67 MB)
MD5: BC79CF7E265568629880C16626980E6A
 
URL URL - Source URL, visit https://www.sciencedirect.com/science/article/pii/S0021869325005526
 
Language:English
Typology:1.01 - Original Scientific Article
Organization:Logo IMFM - Institute of Mathematics, Physics, and Mechanics
Abstract:A $\ast$-linear map $\Phi$ between matrix spaces is cross-positive if it is positive on orthogonal pairs $(U,V)$ of positive semidefinite matrices in the sense that $\langle U,V \rangle:={\rm tr}(UV)=0$ implies $\langle\Phi (U),V \rangle \ge 0$, and is completely cross-positive if all its ampliations $I_n \otimes \Phi$ are cross-positive. (Completely) cross-positive maps arise in the theory of operator semigroups, where they are sometimes called exponentially-positive maps, and are also important in the theory of affine processes on symmetric cones in mathematical finance. To each $\Phi$ as above a bihomogeneous form is associated by $p_\Phi (x,y)=y^T\Phi (xx^T)y$. Then $\Phi$ is cross-positive if and only if $p_\Phi$ is nonnegative on the variety of pairs of orthogonal vectors $\{(x,y) | x^Ty = 0\}$. Moreover, $\Phi$ is shown to be completely cross-positive if and only if $p_\Phi$ is a sum of squares modulo the principal ideal $(x^Ty)$. These observations bring the study of cross-positive maps into the powerful setting of real algebraic geometry. Here this interplay is exploited to prove quantitative bounds on the fraction of cross-positive maps that are completely cross-positive. Detailed results about cross-positive maps $\Phi$ mapping between $3\times3$ matrices are given. Finally, an algorithm to produce cross-positive maps that are not completely cross-positive is presented.
Keywords:positive polynomials, sum of squares, positive maps, completely positive maps, one-parameter semigroups, convex cones
Publication status:Published
Publication version:Version of Record
Publication date:01.02.2026
Year of publishing:2026
Number of pages:str. 189-243
Numbering:Vol. 688
PID:20.500.12556/DiRROS-23886 New window
UDC:517.9
ISSN on article:0021-8693
DOI:10.1016/j.jalgebra.2025.09.018 New window
COBISS.SI-ID:253591043 New window
Publication date in DiRROS:17.10.2025
Views:180
Downloads:94
Metadata:XML DC-XML DC-RDF
:
Copy citation
  
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a journal

Title:Journal of algebra
Shortened title:J. algebra
Publisher:Elsevier
ISSN:0021-8693
COBISS.SI-ID:1310986 New window

Document is financed by a project

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:P1-0222
Name:Algebra, teorija operatorjev in finančna matematika

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:J1-50002
Name:Realna algebraična geometrija v matričnih spremenljivkah

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:J1-8132
Name:Pozitivne preslikave in realna algebrična geometrija

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:J1-2453
Name:Matrično konveksne množice in realna algebraična geometrija

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:N1-0217
Name:Nekomutativna realna algebraična geometrija s sledjo

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:J1-3004
Name:Hkratna podobnost matrik

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:J1-60011
Name:Prirezani momentni problem prek realne algebraične geometrije

Funder:EC - European Commission
Project number:101017733
Name:QuantERA II ERA-NET Cofund in Quantum Technologies
Acronym:QuantERA II

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:P1-0288
Name:Algebra in njena uporaba

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.

Secondary language

Language:Slovenian
Keywords:pozitivni polinomi, vsote kvadratov, pozitivne preslikave, popolnoma pozitivnaepreslikave, enoparametrične polgrupe, konveksni stožci


Back