Digital repository of Slovenian research organisations

Show document
A+ | A- | Help | SLO | ENG

Title:Counting largest mutual-visibility and general position sets of glued $t$-ary trees
Authors:ID Klavžar, Sandi (Author)
ID Lakshmanan S., Aparna (Author)
ID Roy, Dhanya (Author)
Files:.pdf PDF - Presentation file, download (515,40 KB)
MD5: 201F8E29CCD1EE13BB71A5A9B16E3946
 
URL URL - Source URL, visit https://link.springer.com/article/10.1007/s00025-025-02529-9
 
Language:English
Typology:1.01 - Original Scientific Article
Organization:Logo IMFM - Institute of Mathematics, Physics, and Mechanics
Abstract:All four invariants of the mutual-visibility problem and, all four invariants of the general position problem are determined for glued binary trees. The number of the corresponding extremal sets is obtained in each of the eight situations. The results are further extended to glued $t$-ary trees, and some of them also to generalized glued binary trees.
Keywords:mutual-visibility set, general position set, glued binary tree, glued t-ary tree, generalized glued binary tree, enumeration
Publication status:Published
Publication version:Version of Record
Publication date:01.11.2025
Year of publishing:2025
Number of pages:14 str.
Numbering:Vol. 80, iss. 7, [article no.] 207
PID:20.500.12556/DiRROS-23802 New window
UDC:519.17
ISSN on article:1422-6383
DOI:10.1007/s00025-025-02529-9 New window
COBISS.SI-ID:251612931 New window
Note:
Publication date in DiRROS:03.10.2025
Views:256
Downloads:108
Metadata:XML DC-XML DC-RDF
:
Copy citation
  
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a journal

Title:Results in mathematics
Shortened title:Results math.
Publisher:Springer
ISSN:1422-6383
COBISS.SI-ID:514963225 New window

Document is financed by a project

Funder:Cochin University of Science and Technology
Funding programme:University JRF Scheme

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:P1-0297
Name:Teorija grafov

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:N1-0285
Name:Metrični problemi v grafih in hipergrafih

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:N1-0355
Name:Prirejanja, transverzale in hipergrafi

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.

Secondary language

Language:Slovenian
Keywords:množica vzajemne vidnosti, množica v splošni legi, lepljeno dvojiško drevo, lepljeno t-arno drevo, posplošeno lepleno dvojiško drevo, preštevanje


Back