| Title: | Deformations of an affine Gorenstein toric pair |
|---|
| Authors: | ID Filip, Matej (Author) |
| Files: | PDF - Presentation file, download (1,04 MB) MD5: ABACE1BC875B06B20514890BB13D569A
URL - Source URL, visit https://www.sciencedirect.com/science/article/pii/S0021869325005320
|
|---|
| Language: | English |
|---|
| Typology: | 1.01 - Original Scientific Article |
|---|
| Organization: | IMFM - Institute of Mathematics, Physics, and Mechanics
|
|---|
| Abstract: | We consider deformations of a pair $(X,\partial X)$, where $X$ is an affine toric Gorenstein variety and $\partial X$ is its boundary. We compute the tangent and obstruction space for the corresponding deformation functor and for an admissible lattice degree $m$ we construct the miniversal deformation of $(X,\partial X)$ in degrees $-km$, for all $k\in{\mathbb N}$. This in particular generalizes Altmann's construction of the miniversal deformation of an isolated Gorenstein toric singularity to an arbitrary non-isolated Gorenstein toric singularity. Moreover, we show that the irreducible components of the reduced miniversal deformation are in one to one correspondence with maximal Minkowski decompositions of the polytope $P\cap(m=1)$, where $P$ is the lattice polytope defining $X$. |
|---|
| Keywords: | deformation theory, toric singularities |
|---|
| Publication status: | Published |
|---|
| Publication version: | Version of Record |
|---|
| Publication date: | 01.02.2026 |
|---|
| Year of publishing: | 2026 |
|---|
| Number of pages: | str. 419-445 |
|---|
| Numbering: | Vol. 687 |
|---|
| PID: | 20.500.12556/DiRROS-23756  |
|---|
| UDC: | 512 |
|---|
| ISSN on article: | 0021-8693 |
|---|
| DOI: | 10.1016/j.jalgebra.2025.09.007  |
|---|
| COBISS.SI-ID: | 250487811  |
|---|
| Note: |
|
|---|
| Publication date in DiRROS: | 01.10.2025 |
|---|
| Views: | 191 |
|---|
| Downloads: | 70 |
|---|
| Metadata: |  |
|---|
|
:
|
Copy citation |
|---|
| | | | Share: |  |
|---|
Hover the mouse pointer over a document title to show the abstract or click
on the title to get all document metadata. |