Digital repository of Slovenian research organisations

Show document
A+ | A- | Help | SLO | ENG

Title:The toll walk transit function of a graph: axiomatic characterizations and first-order non-definability
Authors:ID Changat, Manoj (Author)
ID Jacob, Jeny (Author)
ID Sheela, Lekshmi Kamal K. (Author)
ID Peterin, Iztok (Author)
Files:.pdf PDF - Presentation file, download (1,26 MB)
MD5: C850B80BDF02DCD542CA1AC9B73946C7
 
URL URL - Source URL, visit https://www.sciencedirect.com/science/article/pii/S0166218X25005347
 
Language:English
Typology:1.01 - Original Scientific Article
Organization:Logo IMFM - Institute of Mathematics, Physics, and Mechanics
Abstract:A walk $W=w_1w_2\dots w_k$, $k\geq 2$, is called a toll walk if $w_1\neq w_k$ and $w_2(w_{k-1})$ are the only neighbors of $w_1(w_k)$ on $W$ in a graph $G$. A toll walk interval $T(u,v)$, $u,v\in V(G)$, contains all the vertices that belong to a toll walk between $u$ and $v$. The toll walk intervals yield a toll walk transit function $T:V(G)\times V(G)\rightarrow 2^{V(G)}$. We represent several axioms that characterize the toll walk transit function among chordal graphs, trees, asteroidal triple-free graphs, Ptolemaic graphs, and distance hereditary graphs. We also show that the toll walk transit function can not be described in the language of first-order logic for an arbitrary graph.
Keywords:toll walk, transit function, axioms, chordal graphs, AT-free graphs, Ptolemaic graphs, distance-hereditary graphs
Publication status:Published
Publication version:Version of Record
Publication date:01.02.2026
Year of publishing:2026
Number of pages:str. 128-145
Numbering:Vol. 380
PID:20.500.12556/DiRROS-23680 New window
UDC:519.17
ISSN on article:0166-218X
DOI:10.1016/j.dam.2025.09.006 New window
COBISS.SI-ID:250159875 New window
Note:
Publication date in DiRROS:24.09.2025
Views:224
Downloads:116
Metadata:XML DC-XML DC-RDF
:
Copy citation
  
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a journal

Title:Discrete applied mathematics
Shortened title:Discrete appl. math.
Publisher:Elsevier
ISSN:0166-218X
COBISS.SI-ID:25342464 New window

Document is financed by a project

Funder:Department of Science and Technology, India
Project number:DST/INT/DAAD/P-03/2023)

Funder:University Post Doctoral Fellowships, University of Kerala
Project number:Ac.EVII/2630/2025/UOK).

Funder:University JRF, University of Kerala
Project number:445/2020/UOK

Funder:University JRF, University of Kerala
Project number:391/2021/UOK

Funder:University JRF, University of Kerala
Project number:3093/2022/ UOK

Funder:University JRF, University of Kerala
Project number:4202/2023/UOK

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:P1-0297
Name:Teorija grafov

Licences

License:CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.

Secondary language

Language:Slovenian
Keywords:sprehod s cestninjnjem, tranzitna funkcija, aksiomi, tetivni grafi, grafi brez asteroidnih trojk, Ptolemaični grafi, razdaljno dedni grafi


Back