Digital repository of Slovenian research organisations

Show document
A+ | A- | Help | SLO | ENG

Title:Magnetomechanical detachment of bacterial biofilms using anisotropic magnetic iron oxide nanochains
Authors:ID Šavli, Matija, Institut "Jožef Stefan" (Author)
ID Černila, Manca, Institut "Jožef Stefan" (Author)
ID Caf, Maja, Institut "Jožef Stefan" (Author)
ID Zahirović, Abida, Institut "Jožef Stefan" (Author)
ID Zaveršek, Nika, Institut "Jožef Stefan" (Author)
ID Nemec, Sebastjan, Institut "Jožef Stefan" (Author)
ID Stojanov, Spase, Institut "Jožef Stefan" (Author)
ID Klančnik, Anja (Author)
ID Sabotič, Jerica (Author)
ID Kralj, Slavko, Institut "Jožef Stefan" (Author)
ID Berlec, Aleš, Institut "Jožef Stefan" (Author)
Files:URL URL - Source URL, visit https://pubs.acs.org/doi/10.1021/acsabm.5c01029
 
.pdf PDF - Presentation file, download (6,84 MB)
MD5: 4A586279E6705CD5169961489169653D
 
Language:English
Typology:1.01 - Original Scientific Article
Organization:Logo IJS - Jožef Stefan Institute
Abstract:Bacterial biofilms attach to various surfaces and represent an important clinical and public health problem, as they are highly recalcitrant and are often associated with chronic, nonhealing diseases and healthcare-associated infections. Antibacterial agents are often not sufficient for their elimination and have to be combined with mechanical removal. Mechanical forces can be generated by actuating nonspherical (anisotropic) magnetically responsive nanoparticles in a rotating magnetic field. We have thus prepared anisotropic superparamagnetic nanochains in the size range of 0.5−1 μm by magnetically assembling several iron oxide nanoparticle clusters and coating them with a layer of silica with different shell morphologies: smooth, moderately rough, and highly rough. The silica surface was additionally functionalized with carboxylic groups to increase colloidal stability. The efficacy of the nanochains in biofilm removal was studied systematically with three different model nonpathogenic bacterial species Escherichia coli, Lactococcus lactis, and Pseudomonas fragi; two different magnetic field strengths; two stirring speeds; and two treatment durations. All bacterial species were engineered to express fluorescent proteins to enable quantification of biofilm removal by colony-forming unit count and fluorescence measurements. Nanochains removed >90% of Gram-negative E. coli and P. fragi with a stronger magnetic field, and <90% of Gram-positive L. lactis with a weaker magnetic field. Surface roughness of nanochains, duration, and stirring speed also affected removal, but the effect could not be generalized. In contrast to their effects on biofilms, the functionalized nanochains showed no toxicity to Caco-2 intestinal epithelial cells, regardless of whether magnetomechanical force was employed or not. In summary, we demonstrated that remotely controlled spatial movement of nanoparticles can generate sufficient mechanical forces to disperse attached biofilms while retaining safety in an epithelial cell model.
Keywords:bacterial biofilm, magnetomechanical detachment, magnetic nanoparticles, nanochains
Publication status:Published
Publication version:Version of Record
Submitted for review:30.05.2025
Article acceptance date:26.08.2025
Publication date:04.09.2025
Publisher:ACS Publications
Year of publishing:2025
Number of pages:str. A-M
Numbering:Vol. 8, iss.
Source:ZDA
PID:20.500.12556/DiRROS-23568 New window
UDC:60
ISSN on article:2576-6422
DOI:10.1021/acsabm.5c01029 New window
COBISS.SI-ID:248232707 New window
Copyright:© 2025 The Authors.
Note:Soavtorji: Manca Černila, Maja Caf, Abida Zahirović, Nika Zaveršek, Sebastjan Nemec, Spase Stojanov, Anja Klančnik, Jerica Sabotič, Slavko Kralj, Aleš Berlec; Nasl. z nasl. zaslona; Opis vira z dne 9. 9. 2025;
Publication date in DiRROS:09.09.2025
Views:290
Downloads:132
Metadata:XML DC-XML DC-RDF
:
Copy citation
  
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a journal

Title:ACS applied bio materials
Shortened title:ACS appl. bio mater.
Publisher:ACS Publications
ISSN:2576-6422
COBISS.SI-ID:22951446 New window

Document is financed by a project

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:J7-4420
Name:Selektivno mehansko odstranjevanje bakterijskih biofilmov s konjugiranimi magnetnimi nanodelci

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:J3-3079
Name:Baktericidna nanorezila: preizkus bimodalnega mehanokemijskega odstranjevanja trdovratnih biofilmov

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:J2-3043
Name:Izkoriščanje magneto-mehanskega učinka pri zdravljenju nevrodegenerativnih bolezni

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:J2-60047
Name:Magnetno mikrostrukturiranje površin iz Mg zlitine za izboljšano endotelizacijo in zadržano razgradljivost materialov žilnih opornic

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:P2-0089
Name:Sodobni magnetni in večnamenski materiali

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:P4-0432
Name:Morska in mikrobna biotehnologija

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:P4-0127
Name:Farmacevtska biotehnologija: znanost za zdravje

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:L2-60141
Name:Izboljšanje delovanja toplotnega izmenjevalca z inovativno superhidrofobno prevleko; Super-COR-AI

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.
Licensing start date:04.09.2025
Applies to:VoR

Secondary language

Language:Slovenian
Keywords:bakterijski biofilmi, magnetomehansko odstranjevanje, magnetni nanodelci, vnetna pot IL-23/Th17


Back