Digital repository of Slovenian research organisations

Show document
A+ | A- | Help | SLO | ENG

Title:Skew Laurent series ring over a Dedekind domain
Authors:ID Vitas, Daniel (Author)
Files:.pdf PDF - Presentation file, download (822,97 KB)
MD5: C8360D6E716417F17243EE388CA453AC
 
URL URL - Source URL, visit https://www.sciencedirect.com/science/article/pii/S0021869325004454
 
Language:English
Typology:1.01 - Original Scientific Article
Organization:Logo IMFM - Institute of Mathematics, Physics, and Mechanics
Abstract:We show that the formal skew Laurent series ring $R = D(( x; \sigma ))$ over a commutative Dedekind domain ▫$D$▫ with an automorphism $\sigma$ is a noncommutative Dedekind domain. If $\sigma$ acts trivially on the ideal class group of $D$, then $K_0(R)$, the Grothendieck group of $R$, is isomorphic to $K_0(D)$. Furthermore, we determine the Krull dimension, the global dimension, the general linear rank, and the stable rank of $R$.
Keywords:skew Laurent series rings, noncommutative Dedekind domains, ideal class groups
Publication status:Published
Publication version:Version of Record
Publication date:01.01.2026
Year of publishing:2026
Number of pages:str. 313-336
Numbering:Vol. 685
PID:20.500.12556/DiRROS-23449 New window
UDC:512
ISSN on article:0021-8693
DOI:10.1016/j.jalgebra.2025.07.022 New window
COBISS.SI-ID:247386883 New window
Note:
Publication date in DiRROS:02.09.2025
Views:341
Downloads:162
Metadata:XML DC-XML DC-RDF
:
Copy citation
  
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a journal

Title:Journal of algebra
Shortened title:J. algebra
Publisher:Elsevier
ISSN:0021-8693
COBISS.SI-ID:1310986 New window

Document is financed by a project

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:P1-0288
Name:Algebra in njena uporaba

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.

Back