| Title: | Skew Laurent series ring over a Dedekind domain |
|---|
| Authors: | ID Vitas, Daniel (Author) |
| Files: | PDF - Presentation file, download (822,97 KB) MD5: C8360D6E716417F17243EE388CA453AC
URL - Source URL, visit https://www.sciencedirect.com/science/article/pii/S0021869325004454
|
|---|
| Language: | English |
|---|
| Typology: | 1.01 - Original Scientific Article |
|---|
| Organization: | IMFM - Institute of Mathematics, Physics, and Mechanics
|
|---|
| Abstract: | We show that the formal skew Laurent series ring $R = D(( x; \sigma ))$ over a commutative Dedekind domain ▫$D$▫ with an automorphism $\sigma$ is a noncommutative Dedekind domain. If $\sigma$ acts trivially on the ideal class group of $D$, then $K_0(R)$, the Grothendieck group of $R$, is isomorphic to $K_0(D)$. Furthermore, we determine the Krull dimension, the global dimension, the general linear rank, and the stable rank of $R$. |
|---|
| Keywords: | skew Laurent series rings, noncommutative Dedekind domains, ideal class groups |
|---|
| Publication status: | Published |
|---|
| Publication version: | Version of Record |
|---|
| Publication date: | 01.01.2026 |
|---|
| Year of publishing: | 2026 |
|---|
| Number of pages: | str. 313-336 |
|---|
| Numbering: | Vol. 685 |
|---|
| PID: | 20.500.12556/DiRROS-23449  |
|---|
| UDC: | 512 |
|---|
| ISSN on article: | 0021-8693 |
|---|
| DOI: | 10.1016/j.jalgebra.2025.07.022  |
|---|
| COBISS.SI-ID: | 247386883  |
|---|
| Note: |
|
|---|
| Publication date in DiRROS: | 02.09.2025 |
|---|
| Views: | 341 |
|---|
| Downloads: | 162 |
|---|
| Metadata: |  |
|---|
|
:
|
Copy citation |
|---|
| | | | Share: |  |
|---|
Hover the mouse pointer over a document title to show the abstract or click
on the title to get all document metadata. |