Digital repository of Slovenian research organisations

Show document
A+ | A- | Help | SLO | ENG

Title:Convex geometries yielded by transit functions
Authors:ID Changat, Manoj (Author)
ID Sheela, Lekshmi Kamal K. (Author)
ID Peterin, Iztok (Author)
ID Shanavas, Ameera Vaheeda (Author)
Files:.pdf PDF - Presentation file, download (721,77 KB)
MD5: 0FFF2E5AC67755E1B80382848FD2C87F
 
URL URL - Source URL, visit https://www.opuscula.agh.edu.pl/om-vol45iss4art1
 
Language:English
Typology:1.01 - Original Scientific Article
Organization:Logo IMFM - Institute of Mathematics, Physics, and Mechanics
Abstract:Let $V$ be a finite nonempty set. A transit function is a map $R:V\times V\rightarrow 2^V$ such that $R(u,u)=\{u\}$, $R(u,v)=R(v,u)$ and $u\in R(u,v)$ holds for every $u,v\in V$. A set $K\subseteq V$ is $R$-convex if $R(u,v)\subset K$ for every $u,v\in K$ and all $R$-convex subsets of $V$ form a convexity $\mathcal{C}_R$. We consider the Minkowski-Krein-Milman property that every $R$-convex set $K$ in a convexity $\mathcal{C}_R$ is the convex hull of the set of extreme points of $K$ from axiomatic point of view and present a characterization of it. Later we consider several well-known transit functions on graphs and present the use of the mentioned characterizations on them.
Keywords:Minkowski-Krein-Milman property, convexity, convex geometry, transit function
Publication status:Published
Publication version:Version of Record
Publication date:01.01.2025
Year of publishing:2025
Number of pages:str. 423-450
Numbering:Vol. 45, no. 4
PID:20.500.12556/DiRROS-23030 New window
UDC:514:519.17
ISSN on article:1232-9274
DOI:10.7494/OpMath.2025.45.4.423 New window
COBISS.SI-ID:242921987 New window
Note:
Publication date in DiRROS:17.07.2025
Views:327
Downloads:215
Metadata:XML DC-XML DC-RDF
:
Copy citation
  
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a journal

Title:Rocznik Akademii Górniczo-Hutniczej im. Stanisława Staszica : Opuscula Mathematica
Shortened title:Rocz. Akad. Gór.-Hut. im. Stanisława Staszica, Opusc. Math.
Publisher:AGH University of Science and Technology Press
ISSN:1232-9274
COBISS.SI-ID:16179545 New window

Document is financed by a project

Funder:DST - Department of Science and Technology, India
Project number:DST/INT/DAAD/P-03/2023

Funder:CSIR - Council of Scientific and Industrial Research
Funding programme:Senior Research Fellowship
Project number:09/102 (0260)/2019-EMR-I

Funder:University of Kerala
Funding programme:University Post Doctoral Fellowships
Project number:EVII/2630/2025/UOK

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:P1-0297
Name:Teorija grafov

Funder:CSIR - Council of Scientific and Industrial Research
Project number:09/0102(12336)/2021-EMR-I

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.

Secondary language

Language:Slovenian
Keywords:lastnost Minkowski-Krein-Milman, konveksnost, konveksna geometrija, tranzitna funkcija


Back