| Title: | Convex geometries yielded by transit functions |
|---|
| Authors: | ID Changat, Manoj (Author) ID Sheela, Lekshmi Kamal K. (Author) ID Peterin, Iztok (Author) ID Shanavas, Ameera Vaheeda (Author) |
| Files: | PDF - Presentation file, download (721,77 KB) MD5: 0FFF2E5AC67755E1B80382848FD2C87F
URL - Source URL, visit https://www.opuscula.agh.edu.pl/om-vol45iss4art1
|
|---|
| Language: | English |
|---|
| Typology: | 1.01 - Original Scientific Article |
|---|
| Organization: | IMFM - Institute of Mathematics, Physics, and Mechanics
|
|---|
| Abstract: | Let $V$ be a finite nonempty set. A transit function is a map $R:V\times V\rightarrow 2^V$ such that $R(u,u)=\{u\}$, $R(u,v)=R(v,u)$ and $u\in R(u,v)$ holds for every $u,v\in V$. A set $K\subseteq V$ is $R$-convex if $R(u,v)\subset K$ for every $u,v\in K$ and all $R$-convex subsets of $V$ form a convexity $\mathcal{C}_R$. We consider the Minkowski-Krein-Milman property that every $R$-convex set $K$ in a convexity $\mathcal{C}_R$ is the convex hull of the set of extreme points of $K$ from axiomatic point of view and present a characterization of it. Later we consider several well-known transit functions on graphs and present the use of the mentioned characterizations on them. |
|---|
| Keywords: | Minkowski-Krein-Milman property, convexity, convex geometry, transit function |
|---|
| Publication status: | Published |
|---|
| Publication version: | Version of Record |
|---|
| Publication date: | 01.01.2025 |
|---|
| Year of publishing: | 2025 |
|---|
| Number of pages: | str. 423-450 |
|---|
| Numbering: | Vol. 45, no. 4 |
|---|
| PID: | 20.500.12556/DiRROS-23030  |
|---|
| UDC: | 514:519.17 |
|---|
| ISSN on article: | 1232-9274 |
|---|
| DOI: | 10.7494/OpMath.2025.45.4.423  |
|---|
| COBISS.SI-ID: | 242921987  |
|---|
| Note: |
|
|---|
| Publication date in DiRROS: | 17.07.2025 |
|---|
| Views: | 327 |
|---|
| Downloads: | 215 |
|---|
| Metadata: |  |
|---|
|
:
|
Copy citation |
|---|
| | | | Share: |  |
|---|
Hover the mouse pointer over a document title to show the abstract or click
on the title to get all document metadata. |