| Title: | Antibacterial and antibiofouling activities of carbon polymerized dots/polyurethane and c[sub]60/polyurethane composite films |
|---|
| Authors: | ID Marković, Zoran M. (Author) ID Filimonović, Milica D. B. (Author) ID Milivojević, Dušan (Author) ID Kovač, Janez, Institut "Jožef Stefan" (Author) ID Todorović-Marković, Biljana (Author) |
| Files: | PDF - Presentation file, download (4,97 MB) MD5: 8ECB1FCEE2C9EEB8AC89DC61F1BC0B57
|
|---|
| Language: | English |
|---|
| Typology: | 1.01 - Original Scientific Article |
|---|
| Organization: | IJS - Jožef Stefan Institute
|
|---|
| Abstract: | The cost of treatment of antibiotic-resistant pathogens is on the level of tens of billions of dollars at the moment. It is of special interest to reduce or solve this problem using antimicrobial coatings, especially in hospitals or other healthcare facilities. The bacteria can transfer from medical staff or contaminated surfaces to patients. In this paper, we focused our attention on the antibacterial and antibiofouling activities of two types of photodynamic polyurethane composite films doped with carbon polymerized dots (CPDs) and fullerene C60. Detailed atomic force, electrostatic force and viscoelastic microscopy revealed topology, nanoelectrical and nanomechanical properties of used fillers and composites. A relationship between the electronic structure of the nanocarbon fillers and the antibacterial and antibiofouling activities of the composites was established. Thorough spectroscopic analysis of reactive oxygen species (ROS) generation was conducted for both composite films, and it was found that both of them were potent antibacterial agents against nosocomial bacteria (Klebsiela pneumoniae, Proteus mirabilis, Salmonela enterica, Enterococcus faecalis, Enterococcus epidermis and Pseudomonas aeruginosa). Antibiofouling testing of composite films indicated that the CPDs/PU composite films eradicated almost completely the biofilms of Pseudomonas aeruginosa and Staphylococcus aureus and about 50% of Escherichia coli biofilms |
|---|
| Publication status: | Published |
|---|
| Publication version: | Version of Record |
|---|
| Submitted for review: | 08.02.2024 |
|---|
| Article acceptance date: | 14.03.2024 |
|---|
| Publication date: | 17.03.2024 |
|---|
| Publisher: | MDPI |
|---|
| Year of publishing: | 2024 |
|---|
| Numbering: | Vol. 15, Iss. 3 |
|---|
| Source: | Švica |
|---|
| PID: | 20.500.12556/DiRROS-22948  |
|---|
| UDC: | 539 |
|---|
| ISSN on article: | 2079-4983 |
|---|
| DOI: | 10.3390/jfb15030073  |
|---|
| COBISS.SI-ID: | 241940995  |
|---|
| Copyright: | © 2024 by the authors. |
|---|
| Publication date in DiRROS: | 11.07.2025 |
|---|
| Views: | 407 |
|---|
| Downloads: | 141 |
|---|
| Metadata: |  |
|---|
|
:
|
Copy citation |
|---|
| | | | Share: |  |
|---|
Hover the mouse pointer over a document title to show the abstract or click
on the title to get all document metadata. |