Digital repository of Slovenian research organisations

Show document
A+ | A- | Help | SLO | ENG

Title:On commutators of idempotents
Authors:ID Drnovšek, Roman (Author)
Files:.pdf PDF - Presentation file, download (906,25 KB)
MD5: 62463D90DC9A6452EEB47ED554094D6F
 
URL URL - Source URL, visit https://www.tandfonline.com/doi/full/10.1080/03081087.2024.2368734
 
Language:English
Typology:1.01 - Original Scientific Article
Organization:Logo IMFM - Institute of Mathematics, Physics, and Mechanics
Abstract:Let $T$ be an operator on Banach space $X$ that is similar to $- T$ via an involution $U$. Then $U$ decomposes the Banach space $X$ as $X = X_1 \oplus X_2$ with respect to which decomposition we have $U = \left(\begin{matrix} I_1 & 0 \\ 0 & -I_2 \end{matrix} \right)$, where $I_i$ is the identity operator on the closed subspace $X_i$ ($i=1, 2$). Furthermore, $T$ has necessarily the form $T = \left(\begin{matrix} 0 & * \\ * & 0 \end{matrix} \right) $ with respect to the same decomposition. In this note we consider the question when $T$ is a commutator of the idempotent $P = \left(\begin{matrix} I_1 & 0 \\ 0 & 0 \end{matrix} \right)$ and some idempotent $Q$ on $X$. We also determine which scalar multiples of unilateral shifts on $l^p$ spaces ($1 \le p \le \infty$) are commutators of idempotent operators.
Keywords:Banach spaces, operators, idempotents, commutators
Publication status:Published
Publication version:Version of Record
Publication date:01.01.2025
Year of publishing:2025
Number of pages:str. 649-654
Numbering:Vol. 73, iss. 4
PID:20.500.12556/DiRROS-22107 New window
UDC:517.9
ISSN on article:0308-1087
DOI:10.1080/03081087.2024.2368734 New window
COBISS.SI-ID:233159171 New window
Note:
Publication date in DiRROS:24.04.2025
Views:478
Downloads:260
Metadata:XML DC-XML DC-RDF
:
Copy citation
  
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a journal

Title:Linear and multilinear algebra
Shortened title:Linear multilinear algebra
Publisher:Taylor & Francis
ISSN:0308-1087
COBISS.SI-ID:25872128 New window

Document is financed by a project

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:P1-0222
Name:Algebra, teorija operatorjev in finančna matematika

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.

Back