Digital repository of Slovenian research organisations

Show document
A+ | A- | Help | SLO | ENG

Title:On regular graphs with Šoltés vertices
Authors:ID Bašić, Nino (Author)
ID Knor, Martin (Author)
ID Škrekovski, Riste (Author)
Files:.pdf PDF - Presentation file, download (457,76 KB)
MD5: C122CCC75F1CA8729D5422D8EDD1DF59
 
URL URL - Source URL, visit https://amc-journal.eu/index.php/amc/article/view/3085
 
Language:English
Typology:1.01 - Original Scientific Article
Organization:Logo IMFM - Institute of Mathematics, Physics, and Mechanics
Logo RUDOLFOVO - Rudolfovo - Science and Technology Centre Novo Mesto
Abstract:Let $W(G)$ be the Wiener index of a graph $G$. We say that a vertex $v \in V(G)$ is a Šoltés vertex in $G$ if $W(G - v) = W(G)$, i.e. the Wiener index does not change if the vertex $v$ is removed. In 1991, Šoltés posed the problem of identifying all connected graphs ▫$G$▫ with the property that all vertices of $G$ are Šoltés vertices. The only such graph known to this day is $C_{11}$. As the original problem appears to be too challenging, several relaxations were studied: one may look for graphs with at least $k$ Šoltés vertices; or one may look for $\alpha$-Šoltés graphs, i.e. graphs where the ratio between the number of Šoltés vertices and the order of the graph is at least $\alpha$. Note that the original problem is, in fact, to find all $1$-Šoltés graphs. We intuitively believe that every $1$-Šoltés graph has to be regular and has to possess a high degree of symmetry. Therefore, we are interested in regular graphs that contain one or more Šoltés vertices. In this paper, we present several partial results. For every $r\ge 1$ we describe a construction of an infinite family of cubic $2$-connected graphs with at least $2^r$ Šoltés vertices. Moreover, we report that a computer search on publicly available collections of vertex-transitive graphs did not reveal any $1$-Šoltés graph. We are only able to provide examples of large $\frac{1}{3}$-Šoltés graphs that are obtained by truncating certain cubic vertex-transitive graphs. This leads us to believe that no $1$-Šoltés graph other than $C_{11}$ exists.
Keywords:Šoltés problem, Wiener index, regular graphs, cubic graphs, Cayley graph, Šoltés vertex
Publication status:Published
Publication version:Version of Record
Publication date:01.01.2025
Year of publishing:2025
Number of pages:20 str.
Numbering:Vol. 25, no. 2, article no. P2.01
PID:20.500.12556/DiRROS-22051 New window
UDC:519.17
ISSN on article:1855-3966
DOI:10.26493/1855-3974.3085.3ea New window
COBISS.SI-ID:232776195 New window
Note:
Publication date in DiRROS:17.04.2025
Views:1024
Downloads:281
Metadata:XML DC-XML DC-RDF
:
Copy citation
  
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a journal

Title:Ars mathematica contemporanea
Publisher:Društvo matematikov, fizikov in astronomov, Društvo matematikov, fizikov in astronomov, Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije
ISSN:1855-3966
COBISS.SI-ID:239049984 New window

Document is financed by a project

Funder:ARRS - Slovenian Research Agency
Project number:P1-0383
Name:Kompleksna omrežja

Funder:ARRS - Slovenian Research Agency
Project number:J1-3002
Name:Prirejanja in barvanja povezav v kubičnih grafih

Funder:ARRS - Slovenian Research Agency
Project number:P1-0294
Name:Računsko intenzivne metode v teoretičnem računalništvu, diskretni matematiki, kombinatorični optimizaciji ter numerični analizi in algebri z uporabo v naravoslovju in družboslovju

Funder:ARRS - Slovenian Research Agency
Project number:J1-1691
Name:Weissova domneva in posplošitve

Funder:ARRS - Slovenian Research Agency
Project number:N1-0140
Name:Geometrije, grafi, grupe in povezave med njimi

Funder:ARRS - Slovenian Research Agency
Project number:J1-2481
Name:Matematične in računske metode za samosestavljanje poliedrov

Funder:SRDA - Slovak Research and Development Agency
Project number:VEGA 1/0069/23

Funder:SRDA - Slovak Research and Development Agency
Project number:VEGA 1/0011/25

Funder:SRDA - Slovak Research and Development Agency
Project number:APVV-23-0076

Funder:SRDA - Slovak Research and Development Agency
Project number:APVV-22-0005

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.

Back