Digital repository of Slovenian research organisations

Show document
A+ | A- | Help | SLO | ENG

Title:Probabilistic grammars for modeling dynamical systems from coarse, noisy, and partial data
Authors:ID Omejc, Nina, Institut "Jožef Stefan" (Author)
ID Gec, Boštjan, Institut "Jožef Stefan" (Author)
ID Brence, Jure, Institut "Jožef Stefan" (Author)
ID Todorovski, Ljupčo, Institut "Jožef Stefan" (Author)
ID Džeroski, Sašo, Institut "Jožef Stefan" (Author)
Files:URL URL - Source URL, visit https://link.springer.com/article/10.1007/s10994-024-06522-1
 
.pdf PDF - Presentation file, download (2,66 MB)
MD5: E6F3C90B60B1FB137EC01290BAD0411D
 
Language:English
Typology:1.01 - Original Scientific Article
Organization:Logo IJS - Jožef Stefan Institute
Abstract:Ordinary differential equations (ODEs) are a widely used formalism for the mathematical modeling of dynamical systems, a task omnipresent in scientific domains. The paper introduces a novel method for inferring ODEs from data, which extends ProGED, a method for equation discovery that allows users to formalize domain-specific knowledge as probabilistic context-free grammars and use it for constraining the space of candidate equations. The extended method can discover ODEs from partial observations of dynamical systems, where only a subset of state variables can be observed. To evaluate the performance of the newly proposed method, we perform a systematic empirical comparison with alternative state-of-the-art methods for equation discovery and system identification from complete and partial observations. The comparison uses Dynobench, a set of ten dynamical systems that extends the standard Strogatz benchmark. We compare the ability of the considered methods to reconstruct the known ODEs from synthetic data simulated at different temporal resolutions. We also consider data with different levels of noise, i.e., signal-to-noise ratios. The improved ProGED compares favourably to state-of-the-art methods for inferring ODEs from data regarding reconstruction abilities and robustness to data coarseness, noise, and completeness.
Keywords:ordinary differential equations, equation discovery, mathematical modeling, system identification, symbolic regression, partial observability
Publication status:Published
Publication version:Version of Record
Submitted for review:13.03.2023
Article acceptance date:14.02.2024
Publication date:29.05.2024
Publisher:Springer Nature
Year of publishing:2024
Number of pages:str. 7689-7721
Numbering:Vol. 113, iss. 10
Source:Švica
PID:20.500.12556/DiRROS-21779 New window
UDC:004.8
ISSN on article:1573-0565
DOI:10.1007/s10994-024-06522-1 New window
COBISS.SI-ID:230493443 New window
Copyright:© The Author(s) 2024
Note:Nasl. z nasl. zaslona; Soavtorji: Boštjan Gec, Jure Brence, Ljupčo Todorovski, Sašo Džeroski; Opis vira z dne 27. 3. 2025;
Publication date in DiRROS:27.03.2025
Views:595
Downloads:341
Metadata:XML DC-XML DC-RDF
:
Copy citation
  
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a journal

Title:Machine learning
Shortened title:Mach. learn.
Publisher:Kluwer
ISSN:1573-0565
COBISS.SI-ID:513211417 New window

Document is financed by a project

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:P2-0103
Name:Tehnologije znanja

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:J1-3033
Name:Inovativne izotopske tehnike za identificakcijo virov in biogeokemijskega kroženja živega srebra na kontaminairnih območjih - IsoCont

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:J2-2505
Name:Napovedno razvrščanje na podatkovnih tokovih

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:J2-4452
Name:Modeliranje trdo-oksidnih gorivnih celic z uporabo stohastični in razložljivi modelov strojnega učenja

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:J2-4460
Name:Auto-OPT: Avtomatizirana izbira in konfiguracija eno-kriterijskih zveznih optimizacijskih algoritmov

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:J3-3070
Name:Določanje izvora jetrnih zasevkov iz tekočinskih biopsij

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:J4-3095
Name:Aplikacija sekvenciranja posameznih celic in strojnega učenja v biologiji mlečne žleze

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:J5-4575
Name:Investicije kot ključ do izgradnje trajnostnega podjetja: izgradnja teoretičnega modela in multi-metodološka empirična analiza

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:J7-4636
Name:Temeljno razumevanje reakcije tvorbe vodika za novo generacijo elektrokatalizatorjev na osnovi niklja v alkalni in kloralkalni elektrolizi

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:J7-4637
Name:4D STEM energijsko učinkovitih materialov do kvantne ravni

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:N2-0236
Name:Inteligentni sistem sklepanja za biološka odkritja in njegova uporaba pri raziskavah raka

Funder:EC - European Commission
Funding programme:HE
Project number:101059682
Name:Artificial intelligence for the Simulation of Severe AccidentS
Acronym:ASSAS

Funder:EC - European Commission
Funding programme:HE
Project number:101120237
Name:European Lighthouse of AI for Sustainability
Acronym:ELIAS

Funder:EC - European Commission
Funding programme:HE
Project number:101057499
Name:Identification of chemical and biological determinants, their sources, and strategies to promote healthier homes in Europe
Acronym:INQUIRE

Funder:EC - European Commission
Funding programme:HE
Project number:101057014
Name:Partnership for the Assessment of Risks from Chemicals
Acronym:PARC

Funder:EC - European Commission
Funding programme:H2020
Project number:952215
Name:Foundations of Trustworthy AI - Integrating Reasoning, Learning and Optimization
Acronym:TAILOR

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.
Licensing start date:29.05.2024
Applies to:VoR

Secondary language

Language:Slovenian
Keywords:odkrivanje enačb


Back