| Title: | Finding a largest-area triangle in a terrain in near-linear time |
|---|
| Authors: | ID Cabello, Sergio (Author) ID Das, Arun Kumar (Author) ID Das, Sandip (Author) ID Mukherjee, Joydeep (Author) |
| Files: | PDF - Presentation file, download (793,77 KB) MD5: 8B8DC292CEF31313DF64E5F9E473542D
URL - Source URL, visit https://www.sciencedirect.com/science/article/pii/S0925772125000094
|
|---|
| Language: | English |
|---|
| Typology: | 1.01 - Original Scientific Article |
|---|
| Organization: | IMFM - Institute of Mathematics, Physics, and Mechanics
|
|---|
| Abstract: | A terrain is an $x$-monotone polygon whose lower boundary is a single line segment. We present an algorithm to find in a terrain a triangle of largest area in $O(n\log n)$ time, where $n$ is the number of vertices defining the terrain. The best previous algorithm for this problem has a running time of $O(n^2)$. |
|---|
| Keywords: | terrain, inclusion problem, geometric optimisation, hereditary segment tree |
|---|
| Publication status: | Published |
|---|
| Publication version: | Version of Record |
|---|
| Publication date: | 01.09.2025 |
|---|
| Year of publishing: | 2025 |
|---|
| Number of pages: | 13 str. |
|---|
| Numbering: | Vol. 128, [article no.] 102171 |
|---|
| PID: | 20.500.12556/DiRROS-21677  |
|---|
| UDC: | 004.92:519.8 |
|---|
| ISSN on article: | 0925-7721 |
|---|
| DOI: | 10.1016/j.comgeo.2025.102171  |
|---|
| COBISS.SI-ID: | 228678147  |
|---|
| Note: |
|
|---|
| Publication date in DiRROS: | 12.03.2025 |
|---|
| Views: | 546 |
|---|
| Downloads: | 336 |
|---|
| Metadata: |  |
|---|
|
:
|
Copy citation |
|---|
| | | | Share: |  |
|---|
Hover the mouse pointer over a document title to show the abstract or click
on the title to get all document metadata. |