Digital repository of Slovenian research organisations

Show document
A+ | A- | Help | SLO | ENG

Title:The distance function on Coxeter-like graphs and self-dual codes
Authors:ID Orel, Marko (Author)
ID Višnjić, Draženka (Author)
Files:.pdf PDF - Presentation file, download (1,96 MB)
MD5: 601559481BB70482626E3250B98F2611
 
URL URL - Source URL, visit https://doi.org/10.1016/j.ffa.2025.102580
 
Language:English
Typology:1.01 - Original Scientific Article
Organization:Logo IMFM - Institute of Mathematics, Physics, and Mechanics
Abstract:Let $SGL_n(\mathbb{F}_2)$ be the set of all invertible $n\times n$ symmetric matrices over the binary field $\mathbb{F}_2$. Let $\Gamma_n$ be the graph with the vertex set $SGL_n(\mathbb{F}_2)$ where a pair of matrices $\{A,B\}$ form an edge if and only if $\textrm{rank}(A-B)=1$. In particular, $\Gamma_3$ is the well-known Coxeter graph. The distance function $d(A,B)$ in $\Gamma_n$ is described for all matrices $A,B\in SGL_n(\mathbb{F}_2)$. The diameter of $\Gamma_n$ is computed. For odd $n\geq 3$, it is shown that each matrix $A\in SGL_n(\mathbb{F}_2)$ such that $d(A,I)=\frac{n+5}{2}$ and $\textrm{rank}(A-I)=\frac{n+1}{2}$ where $I$ is the identity matrix induces a self-dual code in $\mathbb{F}_2^{n+1}$. Conversely, each self-dual code $C$ induces a family ${\cal F}_C$ of such matrices $A$. The families given by distinct self-dual codes are disjoint. The identification $C\leftrightarrow {\cal F}_C$ provides a graph theoretical description of self-dual codes. A result of Janusz (2007) is reproved and strengthened by showing that the orthogonal group ${\cal O}_n(\mathbb{F}_2)$ acts transitively on the set of all self-dual codes in $\mathbb{F}_2^{n+1}$.
Keywords:Coxeter graph, invertible symmetric matrices, binary field, rank, distance in graphs, alternate matrices, self-dual codes
Publication status:Published
Publication version:Version of Record
Publication date:01.03.2025
Year of publishing:2025
Number of pages:str. 1-51
Numbering:Vol. 103, article 102580
PID:20.500.12556/DiRROS-21403 New window
UDC:519.17
ISSN on article:1071-5797
DOI:10.1016/j.ffa.2025.102580 New window
COBISS.SI-ID:223842819 New window
Publication date in DiRROS:31.01.2025
Views:508
Downloads:323
Metadata:XML DC-XML DC-RDF
:
Copy citation
  
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a journal

Title:Finite fields and their applications
Shortened title:Finite fields their appl.
Publisher:Elsevier, Academic Press
ISSN:1071-5797
COBISS.SI-ID:1464085 New window

Document is financed by a project

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:P1-0285
Name:Algebra, diskretna matematika, verjetnostni račun in teorija iger

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:N1-0140
Name:Geometrije, grafi, grupe in povezave med njimi

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:N1-0208
Name:Avtomorfizmi in izomorfizmi končnih grafov

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:N1-0210
Name:Uporaba grafov v problemih ohranjevalcev

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:J1-4084
Name:Določeni kombinatorični objekti v spektralni domeni - križiščna analiza

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:N1-0296
Name:Gladki izogeometrični prostori zlepkov nad večdelnimi domenami

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:J1-50000
Name:Hamiltonski cikli z rotacijsko simetrijo v povezanih točkovno tranzitivnih grafih

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:Young Researcher program
Name:Young Researcher program

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.

Secondary language

Language:Slovenian
Keywords:Coxeterjev graf, obrnljive simetrične matrike, binarni obseg, rang, razdalja v grafih, alternirajoče matrike, sebi-dualne kode


Back