Digital repository of Slovenian research organisations

Show document
A+ | A- | Help | SLO | ENG

Title:Total mutual-visibility in Hamming graphs
Authors:ID Bujtás, Csilla (Author)
ID Klavžar, Sandi (Author)
ID Tian, Jing (Author)
Files:.pdf PDF - Presentation file, download (512,21 KB)
MD5: 76C8DA0C8283EF377B0D2CDA5E2781EF
 
URL URL - Source URL, visit https://www.opuscula.agh.edu.pl/om-vol45iss1art5
 
Language:English
Typology:1.01 - Original Scientific Article
Organization:Logo IMFM - Institute of Mathematics, Physics, and Mechanics
Abstract:If $G$ is a graph and $X\subseteq V(G)$, then $X$ is a total mutual-visibility set if every pair of vertices $x$ and $y$ of $G$ admits a shortest $x,y$-path $P$ with $V(P) \cap X \subseteq \{x,y\}$. The cardinality of a largest total mutual-visibility set of $G$ is the total mutual-visibility number $\mu_{\rm t}(G)$ of $G$. In this paper the total mutual-visibility number is studied on Hamming graphs, that is, Cartesian products of complete graphs. Different equivalent formulations for the problem are derived. The values $\mu_{\rm t}(K_{n_1}\,\square\, K_{n_2}\,\square\, K_{n_3})$ are determined. It is proved that $\mu_{\rm t}(K_{n_1} \,\square\, \cdots \,\square\, K_{n_r}) = O(N^{r-2})$▫, where $N = n_1+\cdots + n_r$, and that $\mu_{\rm t}(K_s^{\,\square\,, r}) = \Theta(s^{r-2})$ for every $r\ge 3$, where $K_s^{\,\square\,, r}$ denotes the Cartesian product of $r$ copies of $K_s$. The main theorems are also reformulated as Turán-type results on hypergraphs.
Keywords:mutual-visibility set, total mutual-visibility set, Hamming graphs, Turán-type problem
Publication status:Published
Publication version:Version of Record
Publication date:01.01.2025
Year of publishing:2025
Number of pages:str. 63-78
Numbering:Vol. 45, no. 1
PID:20.500.12556/DiRROS-21117 New window
UDC:519.17
ISSN on article:1232-9274
DOI:10.7494/OpMath.2025.45.1.63 New window
COBISS.SI-ID:220652803 New window
Note:
Publication date in DiRROS:30.12.2024
Views:35
Downloads:13
Metadata:XML DC-XML DC-RDF
:
Copy citation
  
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a journal

Title:Rocznik Akademii Górniczo-Hutniczej im. Stanisława Staszica : Opuscula Mathematica
Shortened title:Rocz. Akad. Gór.-Hut. im. Stanisława Staszica, Opusc. Math.
Publisher:AGH University of Science and Technology Press
ISSN:1232-9274
COBISS.SI-ID:16179545 New window

Document is financed by a project

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:P1-0297
Name:Teorija grafov

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:N1-0285
Name:Metrični problemi v grafih in hipergrafih

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:N1-0355
Name:Prirejanja, transverzale in hipergrafi

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.

Secondary language

Language:Slovenian
Keywords:množica vzajemne vidnosti, množica celotne vzajemne vidnosti, Hammingovi grafi, problem Turánovega tipa


Back