Title: | Covering the edges of a graph with triangles |
---|
Authors: | ID Bujtás, Csilla (Author) ID Davoodi, Akbar (Author) ID Ding, Laihao (Author) ID Győri, Ervin (Author) ID Tuza, Zsolt (Author) ID Yang, Donglei (Author) |
Files: | PDF - Presentation file, download (283,48 KB) MD5: 96EE4727625D7B0BB38E7D45FC982644
URL - Source URL, visit https://www.sciencedirect.com/science/article/pii/S0012365X24003571
|
---|
Language: | English |
---|
Typology: | 1.01 - Original Scientific Article |
---|
Organization: | IMFM - Institute of Mathematics, Physics, and Mechanics
|
---|
Abstract: | In a graph $G$, let $\rho_\triangle(G)$ denote the minimum size of a set of edges and triangles that cover all edges of $G$, and let $\alpha_1(G)$ be the maximum size of an edge set that contains at most one edge from each triangle. Motivated by a question of Erdős, Gallai, and Tuza, we study the relationship between $\rho_\triangle(G)$ and $\alpha_1(G)$ and establish a sharp upper bound on $\rho_\triangle(G)$. We also prove Nordhaus-Gaddum-type inequalities for the considered invariants. |
---|
Keywords: | edge-disjoint triangles, edge clique covering, Nordhaus-Gaddum inequality |
---|
Publication status: | Published |
---|
Publication version: | Version of Record |
---|
Publication date: | 01.01.2025 |
---|
Year of publishing: | 2025 |
---|
Number of pages: | 8 str. |
---|
Numbering: | Vol. 348, iss. 1, article no. 114226 |
---|
PID: | 20.500.12556/DiRROS-20511 |
---|
UDC: | 519.17 |
---|
ISSN on article: | 0012-365X |
---|
DOI: | 10.1016/j.disc.2024.114226 |
---|
COBISS.SI-ID: | 206292739 |
---|
Note: |
|
---|
Publication date in DiRROS: | 03.10.2024 |
---|
Views: | 200 |
---|
Downloads: | 110 |
---|
Metadata: | |
---|
:
|
Copy citation |
---|
| | | Share: | |
---|
Hover the mouse pointer over a document title to show the abstract or click
on the title to get all document metadata. |