| Title: | Covering the edges of a graph with triangles |
|---|
| Authors: | ID Bujtás, Csilla (Author) ID Davoodi, Akbar (Author) ID Ding, Laihao (Author) ID Győri, Ervin (Author) ID Tuza, Zsolt (Author) ID Yang, Donglei (Author) |
| Files: | PDF - Presentation file, download (283,48 KB) MD5: 96EE4727625D7B0BB38E7D45FC982644
URL - Source URL, visit https://www.sciencedirect.com/science/article/pii/S0012365X24003571
|
|---|
| Language: | English |
|---|
| Typology: | 1.01 - Original Scientific Article |
|---|
| Organization: | IMFM - Institute of Mathematics, Physics, and Mechanics
|
|---|
| Abstract: | In a graph $G$, let $\rho_\triangle(G)$ denote the minimum size of a set of edges and triangles that cover all edges of $G$, and let $\alpha_1(G)$ be the maximum size of an edge set that contains at most one edge from each triangle. Motivated by a question of Erdős, Gallai, and Tuza, we study the relationship between $\rho_\triangle(G)$ and $\alpha_1(G)$ and establish a sharp upper bound on $\rho_\triangle(G)$. We also prove Nordhaus-Gaddum-type inequalities for the considered invariants. |
|---|
| Keywords: | edge-disjoint triangles, edge clique covering, Nordhaus-Gaddum inequality |
|---|
| Publication status: | Published |
|---|
| Publication version: | Version of Record |
|---|
| Publication date: | 01.01.2025 |
|---|
| Year of publishing: | 2025 |
|---|
| Number of pages: | 8 str. |
|---|
| Numbering: | Vol. 348, iss. 1, article no. 114226 |
|---|
| PID: | 20.500.12556/DiRROS-20511  |
|---|
| UDC: | 519.17 |
|---|
| ISSN on article: | 0012-365X |
|---|
| DOI: | 10.1016/j.disc.2024.114226  |
|---|
| COBISS.SI-ID: | 206292739  |
|---|
| Note: |
|
|---|
| Publication date in DiRROS: | 03.10.2024 |
|---|
| Views: | 746 |
|---|
| Downloads: | 424 |
|---|
| Metadata: |  |
|---|
|
:
|
Copy citation |
|---|
| | | | Share: |  |
|---|
Hover the mouse pointer over a document title to show the abstract or click
on the title to get all document metadata. |