Digital repository of Slovenian research organisations

Show document
A+ | A- | Help | SLO | ENG

Title:Generalization ability of feature-based performance prediction models : a statistical analysis across benchmarks
Authors:ID Nikolikj, Ana, Institut Jožef Stefan (Author)
ID Kostovska, Ana, Institut Jožef Stefan (Author)
ID Cenikj, Gjorgjina, Institut Jožef Stefan (Author)
ID Doerr, Carola (Author)
ID Eftimov, Tome, Institut Jožef Stefan (Author)
Files:URL URL - Source URL, visit https://ieeexplore.ieee.org/document/10611952
 
.pdf PDF - Presentation file, download (1,29 MB)
MD5: CFAE608E802112036A4DFAC6B41B8FAB
 
Language:English
Typology:1.08 - Published Scientific Conference Contribution
Organization:Logo IJS - Jožef Stefan Institute
Abstract:This study examines the generalization ability of algorithm performance prediction models across various bench-mark suites. Comparing the statistical similarity between the problem collections with the accuracy of performance prediction models that are based on exploratory landscape analysis features, we observe that there is a positive correlation between these two measures. Specifically, when the high-dimensional feature value distributions between training and testing suites lack statistical significance, the model tends to generalize well, in the sense that the testing errors are in the same range as the training errors. Two experiments validate these findings: one involving the standard benchmark suites, the BBOB and CEC collections, and another using five collections of affine combinations of BBOB problem instances.
Keywords:meta-learning, single-objective optimization, module importance
Publication status:Published
Publication version:Author Accepted Manuscript
Publication date:08.08.2024
Publisher:IEEE
Year of publishing:2024
Number of pages:8 str.
Source:ZDA
PID:20.500.12556/DiRROS-20434 New window
UDC:004.85
DOI:10.1109/CEC60901.2024.10611952 New window
COBISS.SI-ID:206945027 New window
Copyright:© 2024 IEEE
Note:Nasl. z nasl. zaslona; Opis vira z dne 10. 9. 2024;
Publication date in DiRROS:16.09.2024
Views:247
Downloads:110
Metadata:XML DC-XML DC-RDF
:
Copy citation
  
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a monograph

Title:2024 IEEE Congress on Evolutionary Computation (CEC) : June 30th to July 5th, 2024, Yokohama, Japan
Place of publishing:[Piscataway
Publisher:The Institute of Electrical and Electronics Engineers
Year of publishing:2024
ISBN:979-8-3503-0836-5
COBISS.SI-ID:204216835 New window

Document is financed by a project

Funder:ARRS - Slovenian Research Agency
Project number:P2-0098
Name:Računalniške strukture in sistemi

Funder:ARRS - Slovenian Research Agency
Project number:P2-0103
Name:Tehnologije znanja

Funder:ARRS - Slovenian Research Agency
Project number:J2-4460
Name:Auto-OPT: Avtomatizirana izbira in konfiguracija eno-kriterijskih zveznih optimizacijskih algoritmov

Funder:ARRS - Slovenian Research Agency
Funding programme:young research grant
Project number:PR-12393

Funder:ARRS - Slovenian Research Agency
Funding programme:young researcher grant
Project number:PR-12897

Funder:ARRS - Slovenian Research Agency
Funding programme:young researcher grant
Project number:PR-09773

Funder:Other - Other funder or multiple funders
Funding programme:BI-FR/23-24-PROTEUS001
Project number:PR-12040

Secondary language

Language:Slovenian
Title:Generalization ability of feature-based performance prediction models: a statistical analysis across benchmarks
Keywords:metapodatki, strojno učenje


Back