Title: | Generalized noncooperative Schrödinger-Kirchhoff-type systems in ${\mathbb R}^N$ |
---|
Authors: | ID Chems Eddine, Nabil (Author) ID Repovš, Dušan (Author) |
Files: | PDF - Presentation file, download (481,56 KB) MD5: 66BA5B167D04C8139004C34A5D96B71E
URL - Source URL, visit https://onlinelibrary.wiley.com/doi/10.1002/mana.202200503
|
---|
Language: | English |
---|
Typology: | 1.01 - Original Scientific Article |
---|
Organization: | IMFM - Institute of Mathematics, Physics, and Mechanics
|
---|
Abstract: | We consider a class of noncooperative Schrödinger-Kirchhof-type system, which involves a general variable exponent elliptic operator with critical growth. Under certain suitable conditions on the nonlinearities, we establish the existence of infinitely many solutions for the problem by using the limit index theory, a version of concentration-compactness principle for weighted-variable exponent Sobolev spaces and the principle of symmetric criticality of Krawcewicz and Marzantowicz. |
---|
Keywords: | concentration–compactness principle, critical points theory, critical Sobolev exponents, generalized capillary operator, limit index theory, p-Laplacian, p(x)-Laplacian, Palais–Smale condition, Schrödinger-Kirchhoff-type problems, weighted exponent spaces |
---|
Publication status: | Published |
---|
Publication version: | Version of Record |
---|
Publication date: | 01.06.2024 |
---|
Year of publishing: | 2024 |
---|
Number of pages: | str. 2092–2121 |
---|
Numbering: | Vol. 297, iss. 6 |
---|
PID: | 20.500.12556/DiRROS-19112 |
---|
UDC: | 517.9 |
---|
ISSN on article: | 0025-584X |
---|
DOI: | 10.1002/mana.202200503 |
---|
COBISS.SI-ID: | 186454787 |
---|
Note: |
|
---|
Publication date in DiRROS: | 17.06.2024 |
---|
Views: | 307 |
---|
Downloads: | 201 |
---|
Metadata: | |
---|
:
|
Copy citation |
---|
| | | Share: | |
---|
Hover the mouse pointer over a document title to show the abstract or click
on the title to get all document metadata. |