Digital repository of Slovenian research organisations

Show document
A+ | A- | Help | SLO | ENG

Title:The liberation set in the inverse eigenvalue problem of a graph
Authors:ID Lin, Jephian C.-H. (Author)
ID Oblak, Polona (Author)
ID Šmigoc, Helena (Author)
Files:URL URL - Source URL, visit https://www.sciencedirect.com/science/article/pii/S0024379523002276?via=ihub
 
.pdf PDF - Presentation file, download (626,24 KB)
MD5: 16393A6DD827E34C97CD6D0EF83BBE11
 
Language:English
Typology:1.01 - Original Scientific Article
Organization:Logo IMFM - Institute of Mathematics, Physics, and Mechanics
Abstract:The inverse eigenvalue problem of a graph $G$ is the problem of characterizing all lists of eigenvalues of real symmetric matrices whose off-diagonal pattern is prescribed by the adjacencies of $G$. The strong spectral property is a powerful tool in this problem, which identifies matrices whose entries can be perturbed while controlling the pattern and preserving the eigenvalues. The Matrix Liberation Lemma introduced by Barrett et al. in 2020 advances the notion to a more general setting. In this paper we revisit the Matrix Liberation Lemma and prove an equivalent statement, that reduces some of the technical difficulties in applying the result. We test our method on matrices of the form $M=A \oplus B$ and show how this new approach supplements the results that can be obtained from the strong spectral property only. While extending this notion to the direct sums of graphs, we discover a surprising connection with the zero forcing game on Cartesian products of graphs. Throughout the paper we apply our results to resolve a selection of open cases for the inverse eigenvalue problem of a graph on six vertices.
Keywords:symmetric matrix, inverse eigenvalue problem, strong spectral property, Matrix Liberation Lemma, zero forcing
Publication status:Published
Publication version:Version of Record
Publication date:01.10.2023
Year of publishing:2023
Number of pages:str. 1-28
Numbering:Vol. 675
PID:20.500.12556/DiRROS-18403 New window
UDC:512
ISSN on article:0024-3795
DOI:10.1016/j.laa.2023.06.009 New window
COBISS.SI-ID:157762051 New window
Publication date in DiRROS:14.03.2024
Views:444
Downloads:207
Metadata:XML DC-XML DC-RDF
:
Copy citation
  
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a journal

Title:Linear algebra and its applications
Shortened title:Linear algebra appl.
Publisher:North Holland
ISSN:0024-3795
COBISS.SI-ID:1119247 New window

Document is financed by a project

Funder:ARRS - Slovenian Research Agency
Funding programme:Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Project number:P1-0222-2022
Name:Algebra, teorija operatorjev in finančna matematika

Funder:ARRS - Slovenian Research Agency
Funding programme:Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Project number:J1-3004-2021
Name:Hkratna podobnost matrik

Funder:Other - Other funder or multiple funders
Funding programme:Taiwan, National Science and Technology Council, Young Scholar Fellowship
Project number:NSTC-111-2628-M-110-002

Licences

License:CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.

Secondary language

Language:Slovenian
Keywords:simetrična matrika, inverzni problem lastnih vrednosti, krepka spektralna lastnost, ničelna prisila


Back