Digital repository of Slovenian research organisations

Show document
A+ | A- | Help | SLO | ENG

Title:Recent developments on Oka manifolds
Authors:ID Forstnerič, Franc (Author)
Files:URL URL - Source URL, visit https://www.sciencedirect.com/science/article/pii/S0019357723000058
 
.pdf PDF - Presentation file, download (1014,41 KB)
MD5: 809C4E45CE03B22B04D9C545C4D0ED59
 
Language:English
Typology:1.02 - Review Article
Organization:Logo IMFM - Institute of Mathematics, Physics, and Mechanics
Abstract:In this paper we present the main developments in Oka theory since the publication of my book "Stein Manifolds and Holomorphic Mappings (The Homotopy Principle in Complex Analysis)", 2nd ed., Springer, 2017. We also give several new results, examples and constructions of Oka domains in Euclidean and projective spaces. Furthermore, we show that for $n > 1$ the fibre $\mathbb C^n$ in a Stein family can degenerate to a non-Oka fibre, thereby answering a question of Takeo Ohsawa. Several open problems are discussed.
Keywords:Oka manifold, Oka map, Stein manifold, elliptic manifold, algebraically subelliptic manifold, Calabi–Yau manifold, density property
Publication status:Published
Publication version:Version of Record
Publication date:01.03.2023
Year of publishing:2023
Number of pages:str. 367-417
Numbering:Vol. 34, iss. 2
PID:20.500.12556/DiRROS-18399 New window
UDC:517.5
ISSN on article:0019-3577
DOI:10.1016/j.indag.2023.01.005 New window
COBISS.SI-ID:140663299 New window
Note:
Publication date in DiRROS:14.03.2024
Views:836
Downloads:662
Metadata:XML DC-XML DC-RDF
:
Copy citation
  
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a journal

Title:Indagationes mathematicae
Shortened title:Indag. math.
Publisher:North-Holland
ISSN:0019-3577
COBISS.SI-ID:25594112 New window

Document is financed by a project

Funder:EC - European Commission
Funding programme:European Commission
Project number:101053085
Name:Holomorphic Partial Differential Relations
Acronym:HPDR

Funder:ARIS - Slovenian Research and Innovation Agency
Funding programme:Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Project number:P1-0291-2022
Name:Analiza in geometrija

Funder:ARIS - Slovenian Research and Innovation Agency
Funding programme:Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Project number:J1-3005-2021
Name:Kompleksna in geometrijska analiza

Funder:ARIS - Slovenian Research and Innovation Agency
Funding programme:Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Project number:N1-0237-2022
Name:Holomorfne parcialne diferencialne relacije

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.

Secondary language

Language:Slovenian
Keywords:Oka mnogoterost, Oka preslikava, Steinova mnogoterost, eliptična mnogoterost, algebraično subeliptična mnogoterost, Calabi–Yau mnogoterost, lastnost gostote


Back