| Title: | Minimal surfaces with symmetries |
|---|
| Authors: | ID Forstnerič, Franc (Author) |
| Files: | URL - Source URL, visit https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/plms.12590
PDF - Presentation file, download (483,34 KB) MD5: DDCD746711142D30954B69AEDC137F4C
|
|---|
| Language: | English |
|---|
| Typology: | 1.01 - Original Scientific Article |
|---|
| Organization: | IMFM - Institute of Mathematics, Physics, and Mechanics
|
|---|
| Abstract: | Let $G$ be a finite group acting on a connected open Riemann surface $X$ by holomorphic automorphisms and acting on a Euclidean space ${\mathbb R}^n$ $(n\ge 3)$ by orthogonal transformations. We identify a necessary and sufficient condition for the existence of a $G$-equivariant conformal minimal immersion $F:X\to{\mathbb R}^n$. We show in particular that such a map $F$ always exists if $G$ acts without fixed points on $X$. Furthermore, every finite group $G$ arises in this way for some open Riemann surface $X$ and $n=2|G|$. We obtain an analogous result for minimal surfaces having complete ends with finite total Gaussian curvature, and for discrete infinite groups acting on $X$ properly discontinuously and acting on ${\mathbb R}^n$ by rigid transformations. |
|---|
| Keywords: | Riemann surfaces, minimal surfaces, G-equivariant conformal minimal immersion |
|---|
| Publication status: | Published |
|---|
| Publication version: | Version of Record |
|---|
| Publication date: | 01.03.2024 |
|---|
| Year of publishing: | 2024 |
|---|
| Number of pages: | 32 str. |
|---|
| Numbering: | Vol. 128, iss. 3, [article no.] e12590 |
|---|
| PID: | 20.500.12556/DiRROS-18392  |
|---|
| UDC: | 517.5 |
|---|
| ISSN on article: | 0024-6115 |
|---|
| DOI: | 10.1112/plms.12590  |
|---|
| COBISS.SI-ID: | 188644867  |
|---|
| Note: |
|
|---|
| Publication date in DiRROS: | 13.03.2024 |
|---|
| Views: | 1019 |
|---|
| Downloads: | 587 |
|---|
| Metadata: |  |
|---|
|
:
|
Copy citation |
|---|
| | | | Share: |  |
|---|
Hover the mouse pointer over a document title to show the abstract or click
on the title to get all document metadata. |