Title: | Minimal surfaces with symmetries |
---|
Authors: | ID Forstnerič, Franc (Author) |
Files: | URL - Source URL, visit https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/plms.12590
PDF - Presentation file, download (483,34 KB) MD5: DDCD746711142D30954B69AEDC137F4C
|
---|
Language: | English |
---|
Typology: | 1.01 - Original Scientific Article |
---|
Organization: | IMFM - Institute of Mathematics, Physics, and Mechanics
|
---|
Abstract: | Let $G$ be a finite group acting on a connected open Riemann surface $X$ by holomorphic automorphisms and acting on a Euclidean space ${\mathbb R}^n$ $(n\ge 3)$ by orthogonal transformations. We identify a necessary and sufficient condition for the existence of a $G$-equivariant conformal minimal immersion $F:X\to{\mathbb R}^n$. We show in particular that such a map $F$ always exists if $G$ acts without fixed points on $X$. Furthermore, every finite group $G$ arises in this way for some open Riemann surface $X$ and $n=2|G|$. We obtain an analogous result for minimal surfaces having complete ends with finite total Gaussian curvature, and for discrete infinite groups acting on $X$ properly discontinuously and acting on ${\mathbb R}^n$ by rigid transformations. |
---|
Keywords: | Riemann surfaces, minimal surfaces, G-equivariant conformal minimal immersion |
---|
Publication status: | Published |
---|
Publication version: | Version of Record |
---|
Publication date: | 01.03.2024 |
---|
Year of publishing: | 2024 |
---|
Number of pages: | 32 str. |
---|
Numbering: | Vol. 128, iss. 3, [article no.] e12590 |
---|
PID: | 20.500.12556/DiRROS-18392 |
---|
UDC: | 517.5 |
---|
ISSN on article: | 0024-6115 |
---|
DOI: | 10.1112/plms.12590 |
---|
COBISS.SI-ID: | 188644867 |
---|
Note: |
|
---|
Publication date in DiRROS: | 13.03.2024 |
---|
Views: | 469 |
---|
Downloads: | 197 |
---|
Metadata: | |
---|
:
|
Copy citation |
---|
| | | Share: | |
---|
Hover the mouse pointer over a document title to show the abstract or click
on the title to get all document metadata. |