Digital repository of Slovenian research organisations

Show document
A+ | A- | Help | SLO | ENG

Title:General position polynomials
Authors:ID Iršič, Vesna (Author)
ID Klavžar, Sandi (Author)
ID Rus, Gregor (Author)
ID Tuite, James (Author)
Files:URL URL - Source URL, visit https://link.springer.com/article/10.1007/s00025-024-02133-3
 
.pdf PDF - Presentation file, download (384,07 KB)
MD5: C344F14A1F3E3CDD2E3D55BB1B2CC4DC
 
Language:English
Typology:1.01 - Original Scientific Article
Organization:Logo IMFM - Institute of Mathematics, Physics, and Mechanics
Abstract:A subset of vertices of a graph $G$ is a general position set if no triple of vertices from the set lie on a common shortest path in $G$. In this paper we introduce the general position polynomial as $\sum_{i \geq 0} a_i x^i$, where $a_i$ is the number of distinct general position sets of $G$ with cardinality $i$. The polynomial is considered for several well-known classes of graphs and graph operations. It is shown that the polynomial is not unimodal in general, not even on trees. On the other hand, several classes of graphs, including Kneser graphs $K(n,2)$, with unimodal general position polynomials are presented.
Keywords:general position set, general position number, general position polynomial, unimodality, trees, Cartesian product of graphs, Kneser graphs
Publication status:Published
Publication version:Version of Record
Publication date:01.05.2024
Year of publishing:2024
Number of pages:16 str.
Numbering:Vol. 79, iss. 3, [article no.] 110
PID:20.500.12556/DiRROS-18275 New window
UDC:519.17
ISSN on article:1422-6383
DOI:10.1007/s00025-024-02133-3 New window
COBISS.SI-ID:187024387 New window
Note:
Publication date in DiRROS:28.02.2024
Views:601
Downloads:285
Metadata:XML DC-XML DC-RDF
:
Copy citation
  
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a journal

Title:Results in mathematics
Shortened title:Results math.
Publisher:Springer Nature
ISSN:1422-6383
COBISS.SI-ID:514963225 New window

Document is financed by a project

Funder:ARRS - Slovenian Research Agency
Funding programme:Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Project number:P1-0297-2022
Name:Teorija grafov

Funder:ARRS - Slovenian Research Agency
Funding programme:Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Project number:J1-2452-2020
Name:Strukturni, optimizacijski in algoritmični problemi v geometrijskih in topoloških predstavitvah grafov

Funder:ARRS - Slovenian Research Agency
Funding programme:Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Project number:N1-0285-2023
Name:Metrični problemi v grafih in hipergrafih

Funder:EC - European Commission
Funding programme:European Commission
Project number:101071836
Name:KARST: Predicting flow and transport in complex Karst systems
Acronym:KARST

Funder:ARRS - Slovenian Research Agency
Funding programme:Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Project number:Z1-50003
Name:Igra policajev in roparja na grafih in geodetskih prostorih

Funder:Other - Other funder or multiple funders
Funding programme:LMS Research in Pairs Grant
Project number:42235

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.

Secondary language

Language:Slovenian
Keywords:množice v splošni legi, število splošne lege, polinom splošne lege, unimodalnost, drevesa, kartezični produkt grafov, Kneserjevi grafi


Back