Digital repository of Slovenian research organisations

Show document
A+ | A- | Help | SLO | ENG

Title:Nodal solutions for Neumann systems with gradient dependence
Authors:ID Saoudi, Kamel (Author)
ID Alzahrani, Eadah (Author)
ID Repovš, Dušan (Author)
Files:URL URL - Source URL, visit https://boundaryvalueproblems.springeropen.com/articles/10.1186/s13661-023-01814-2
 
.pdf PDF - Presentation file, download (1,48 MB)
MD5: 0B6F5CF615DF90828E822E1CBBE3355D
 
Language:English
Typology:1.01 - Original Scientific Article
Organization:Logo IMFM - Institute of Mathematics, Physics, and Mechanics
Abstract:We consider the following convective Neumann systems: $\begin{equation*}\left(\mathrm{S}\right)\qquad\left\{\begin{array}{ll}-\Delta_{p_1}u_1+\frac{|\nabla u_1|^{p_1}}{u_1+\delta_1}=f_1(x,u_1,u_2,\nabla u_1,\nabla u_2) \text{in}\;\Omega,\\ -\Delta _{p_2}u_2+\frac{|\nabla u_2|^{p_2}}{u_2+\delta_2}=f_2(x,u_1,u_2,\nabla u_1,\nabla u_2) \text{in}\;\Omega, \\ |\nabla u_1|^{p_1-2}\frac{\partial u_1}{\partial \eta }=0=|\nabla u_2|^{p_2-2}\frac{\partial u_2}{\partial \eta} \text{on}\;\partial\,\Omega,\end{array}\right.\end{equation*}$ where $\Omega$ is a bounded domain in $\mathbb{R}^{N}$ ($N\geq 2$) with a smooth boundary $\partial\,\Omega, \delta_1, \delta_2 > 0$ are small parameters, $\eta$ is the outward unit vector normal to $\partial\,\Omega, f_1, f_2: \Omega \times \mathbb{R}^2 \times \mathbb{R}^{2N} \rightarrow \mathbb{R}$ are Carathéodory functions that satisfy certain growth conditions, and $\Delta _{p_i}$ ($1< p_i < N,$ for $i=1,2$) are the $p$-Laplace operators $\Delta _{p_i}u_i=\mathrm{div}(|\nabla u_i|^{p_i-2}\nabla u_i)$, for $u_i \in W^{1,p_i}(\Omega).$ In order to prove the existence of solutions to such systems, we use a sub-supersolution method. We also obtain nodal solutions by constructing appropriate sub-solution and super-solution pairs. To the best of our knowledge, such systems have not been studied yet.
Keywords:Neumann elliptic systems, gradient dependence, subsolution method, supersolution method, nodal solutions
Publication status:Published
Publication version:Version of Record
Publication date:01.01.2024
Year of publishing:2024
Number of pages:19 str.
Numbering:Vol. 2024, article no. 4
PID:20.500.12556/DiRROS-18198 New window
UDC:517.9
ISSN on article:1687-2770
DOI:10.1186/s13661-023-01814-2 New window
COBISS.SI-ID:180215555 New window
Note:
Publication date in DiRROS:16.02.2024
Views:640
Downloads:227
Metadata:XML DC-XML DC-RDF
:
Copy citation
  
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a journal

Title:Boundary value problems
Shortened title:Bound. value probl.
Publisher:Springer
ISSN:1687-2770
COBISS.SI-ID:62113025 New window

Document is financed by a project

Funder:ARRS - Slovenian Research Agency
Funding programme:Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Project number:P1-0292-2022
Name:Topologija in njena uporaba

Funder:ARRS - Slovenian Research Agency
Funding programme:Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Project number:J1-4031-2022
Name:Računalniška knjižnica za zavozlane strukture in aplikacije

Funder:ARRS - Slovenian Research Agency
Funding programme:Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Project number:J1-4001-2022
Name:Izbrani problemi iz uporabne in računske topologije

Funder:ARRS - Slovenian Research Agency
Funding programme:Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Project number:N1-0278-2023
Name:Biološka koda vozlov - identifikacija vzorcev vozlanja v biomolekulah z uporabo umetne inteligence

Funder:ARRS - Slovenian Research Agency
Funding programme:Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Project number:N1-0114-2019
Name:Algebrajski odtisi geometrijskih značilnosti v homologiji

Funder:ARRS - Slovenian Research Agency
Funding programme:Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Project number:N1-0083-2018
Name:Forsing, fuzija in kombinatorika odprtih pokritij

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.

Back