Title: | Partial domination in supercubic graphs |
---|
Authors: | ID Bujtás, Csilla (Author) ID Henning, Michael A. (Author) ID Klavžar, Sandi (Author) |
Files: | URL - Source URL, visit https://www.sciencedirect.com/science/article/pii/S0012365X23003552
PDF - Presentation file, download (304,87 KB) MD5: ACE2EBE8F78937B8559A1EBDBF9D5E0F
|
---|
Language: | English |
---|
Typology: | 1.01 - Original Scientific Article |
---|
Organization: | IMFM - Institute of Mathematics, Physics, and Mechanics
|
---|
Abstract: | For some $\alpha$ with $0 < \alpha \le 1$, a subset $X$ of vertices in a graph $G$ of order $n$ is an $\alpha$-partial dominating set of $G$ if the set $X$ dominates at least $\alpha \times n$ vertices in $G$. The $\alpha$-partial domination number ${\rm pd}_{\alpha}(G)$ of $G$ is the minimum cardinality of an $\alpha$-partial dominating set of $G$. In this paper partial domination of graphs with minimum degree at least $3$ is studied. It is proved that if $G$ is a graph of order $n$ and with $\delta(G)\ge 3$, then ${\rm pd}_{\frac{7}{8}}(G) \le \frac{1}{3}n$. If in addition $n\ge 60$, then ${\rm pd}_{\frac{9}{10}}(G) \le \frac{1}{3}n$, and if $G$ is a connected cubic graph of order $n\ge 28$, then ${\rm pd}_{\frac{13}{14}}(G) \le \frac{1}{3}n$. Along the way it is shown that there are exactly four connected cubic graphs of order $14$ with domination number $5$. |
---|
Keywords: | domination, partial domination, cubic graphs, supercubic graphs |
---|
Publication status: | Published |
---|
Publication version: | Version of Record |
---|
Publication date: | 01.01.2024 |
---|
Year of publishing: | 2024 |
---|
Number of pages: | 11 str. |
---|
Numbering: | Vol. 347, iss. 1, article no. 113669 |
---|
PID: | 20.500.12556/DiRROS-18189 |
---|
UDC: | 519.17 |
---|
ISSN on article: | 0012-365X |
---|
DOI: | 10.1016/j.disc.2023.113669 |
---|
COBISS.SI-ID: | 162890243 |
---|
Publication date in DiRROS: | 15.02.2024 |
---|
Views: | 528 |
---|
Downloads: | 235 |
---|
Metadata: | |
---|
:
|
Copy citation |
---|
| | | Share: | |
---|
Hover the mouse pointer over a document title to show the abstract or click
on the title to get all document metadata. |