Digital repository of Slovenian research organisations

Show document
A+ | A- | Help | SLO | ENG

Title:Prediction of the peak shear strength of the rock joints with artificial neural networks
Authors:ID Fifer Bizjak, Karmen (Author)
ID Vezočnik, Rok (Author)
Files:URL URL - Source URL, visit https://www.geologija-revija.si/index.php/geologija/article/view/1839/1904
 
.pdf PDF - Presentation file, download (1,25 MB)
MD5: 80F64BC9F1D28397E389BFEE0323FE9E
 
Language:English
Typology:1.01 - Original Scientific Article
Organization:Logo ZAG - Slovenian National Building and Civil Engineering Institute
Abstract:With the development of computer technology, artificial neural networks are becoming increasingly useful in the field of engineering geology and geotechnics. With artificial neural networks, the geomechanical properties of rocks or their behaviour could be predicted under different stress conditions. Slope failures or underground excavations in rocks mostly occurred through joints, which are essential for the stability of geotechnical structures. This is why the peak shear strength of a rock joint is the most important parameter for a rock mass stability. Testing of the shear characteristics of joints is often time consuming and suitable specimens for testing are difficult to obtain during the research phase. The roughness of the joint surface, tensile strength and vertical load have a great influence on the peak shear strength of the rock joint. In the presented paper, the surface roughness of joints was measured with a photogrammetric scanner, and the peak shear strength was determined by the Robertson direct shear test. Based on six input characteristics of the rock joints, the artificial neural network, using a backpropagation learning algorithm, successfully learned to predict the peak shear strength of the rock joint. The trained artificial neural network predicted the peak shear strength for similar lithological and geological conditions with average estimation error of 6%. The results of the calculation with artificial neural networks were compared with the Grasselli experimental model, which showed a higher error in comparison with the artificial neural network model.
Keywords:artificial neural network, camera-type 3D scanner, rock mechanics, rock joint, joint roughness
Publication status:Published
Publication version:Version of Record
Publication date:18.11.2022
Publisher:Geološki zavod Slovenije
Year of publishing:2022
Number of pages:str. 149-158
Numbering:vol. 65, no. 2
PID:20.500.12556/DiRROS-16013-ee24446a-668f-c9fb-4368-ccc623fca89d New window
UDC:624
ISSN on article:0016-7789
DOI:10.5474/geologija.2022.009 New window
COBISS.SI-ID:129981955 New window
Copyright:© Author(s) 2022.
Publication date in DiRROS:18.01.2023
Views:693
Downloads:371
Metadata:XML DC-XML DC-RDF
:
Copy citation
  
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a journal

Title:Geologija
Shortened title:Geologija
Publisher:Geološki zavod Slovenije
ISSN:0016-7789
COBISS.SI-ID:5636866 New window

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.

Secondary language

Language:Slovenian
Title:Napoved vrhunske strižne trdnosti po razpoki v kamnini z nevronskimi mrežami
Abstract:Nevronske mreže postajajo z razvojem računalniške tehnologije vedno bolj uporabne tudi na področju inženirske geologije in geotehnike. Z nevronskimi mrežami lahko na osnovi večjega števila podatkov napovemo geomehanske lastnosti kamnine ali njihovo obnašanje v različnih napetostnih pogojih. Porušitve brežin ali podzemnih prostorov v kamninskem masivu se večinoma pojavijo po razpokah, zato so strižne lastnosti v razpokah ali prelomih bistvene za stabilnost geotehničnih objektov. Preiskave strižnih lastnosti so večinoma dolgotrajne, prav tako pa je pri vrtanju v fazi raziskav težko pridobiti primerne vzorce. Velik vpliv na velikost vrhunske strižne trdnosti ima hrapavost površine razpoke, natezna trdnost in vertikalna obremenitev. V predstavljenem članku je hrapavost površine razpok izmerjena s fotogravimetričnim skenerjem, vrhunska strižna trdnost pa je določena z Robertsonovo direktno strižno preiskavo. Na osnovi šestih vhodni karakteristik razpok in kamnine ter izmerjene strižne trdnosti z Robertsonovo preiskavo, lahko z naučeno nevronsko mrežo uspešno napovemo vrhunsko strižno trdnost po razpoki. Tako naučena nevronska mreža lahko dovolj natančno napove vrhunsko strižno trdnost za podobne litološke razmere in geološke pogoje, z upoštevanjem dokaj nizke napake, to je 6%. Rezultate izračuna z nevronskimi mrežami smo primerjali z eksperimentalnim modelom, ki je v primerjavi z nevronskimi mrežami pokazal višjo napako napovedi vrhunske strižne trdnosti.
Keywords:nevronska mreža, mehanika kamnin, razpoke, hrapavost razpok, 3D skener s kamero


Collection

This document is a part of these collections:
  1. Geologija

Back