Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "keywords" (stainless steel) .

1 - 10 / 17
First pagePrevious page12Next pageLast page
1.
The effect of heat treatment on the interface of 155 PH martensitic stainless steel and SAF 2507 duplex steel in functionally graded AM components
Martina Koukolíková, Pavel Podaný, Sylwia Rzepa, Michal Brázda, Aleksandra Kocijan, 2023, original scientific article

Abstract: Multi-material components, also known as functionally graded materials (FGMs), are innovative materials that possess unique properties due to their composition and have many potential applications in engineering and science. The effect of the heat treatment (HT) of functionally graded materials 15–5 precipitation-hardened (PH) martensitic steel and SAF 2507 duplex stainless steel (and the opposite order of deposition, i.e. SAF 2507 first followed by 15–5 PH stainless steel) on the interface microstructures was systematically investigated in the presented research. The choice of HT followed the trend of optimum post-processing for the individual alloys. A significant modification in the interface microstructure, characterized in the microstructural transition zone (MTZ) formed above the fusion line. Mechanical properties by miniaturized testing method including hardness measurement characterized both types of interfaces. The sequence of the materials’ application did not have a significant effect on their final mechanical tensile properties in the heat-treated states. Nevertheless, the microstructural change at the MTZ led to drop in the hardness at the interface. The research presents heat-treated FGMs in a horizontal configuration to form a high-quality metallurgical joint between heterogeneous materials manufactured by powder-based directed energy deposition method.
Keywords: heat treatment, additive manufacturing, martensitic stainless steel, duplex steel, microstructure, mechanical properties
Published in DiRROS: 04.04.2024; Views: 69; Downloads: 18
URL Link to file

2.
3.
4.
Ladle melt treatment of high sulfur stainless steels
Jaka Burja, 2024, published scientific conference contribution

Abstract: The influence of sulfur on both slag and melt is very important in steelmaking. This is especially true for highsulfur machining steels. Machinability is achieved by alloying high sulfur contents, above 300 ppm. These are steels that form small chips and shavings during mechanical processing by cutting, which is more appropriate and favorable for both the workpiece and the processing tool and machine. However, the secondary steelmaking slag is typically designed for desulfurization. This means that the sulfur content rapidly falls after sulfur additions. This is especially true for high machinability stainless steel grades where S contents can exceed 1000 ppm. This causes the sulfur wire yield to vary greatly in each charge, making the process unreliable. Some aspects of understanding the interaction between the steel melt and slag and the effect on casting are presented in this work. Based on industrial charges, we analyzed the yield of sulfur additions and the influencing factors on the efficiency of the sulfur addition. The lower slag basicity was linked to lover sulfur distribution rations, and lover sulfur distribution rations were linked to higher sulfur yields. Melt and slag samples were analyzed. Slag entrapment during ingot casting was linked to the high sulfur contents.
Keywords: desulfurization, sulfur, stainless steel, steelmaking
Published in DiRROS: 28.02.2024; Views: 162; Downloads: 64
.pdf Full text (526,82 KB)
This document has many files! More...

5.
6.
7.
Tribological evaluation of vegetable ▫$oil/MoS_2$▫ nanotube-based lubrication of laser-textured stainless steel
Marjetka Conradi, Bojan Podgornik, Maja Remškar, Damjan Klobčar, Aleksandra Kocijan, 2023, original scientific article

Abstract: In the present work, the functionalisation of austenitic stainless steel, AISI 316L surfaces via nanosecond Nd:YAG laser texturing in order to modify the surface morphology with crosshatch and dimple patterns is presented. A tribological analysis under lubrication with sunflower and jojoba oil with and without the addition of a solid lubricant, MoS2 nanotubes, was performed. In conjunction with friction/wear response laser-textured surface wettability, oil spreadability and oil retention capacity were also analysed. It was shown that the crosshatch pattern generally exhibited lower friction than the dimple pattern, with the addition of MoS2 nanotubes not having any significant effect on the coefficient of friction under the investigated contact conditions. This was found in addition to the better oil spreadability and oil retention capacity results of the crosshatch-textured surface. Furthermore, texturing reduced the wear of the stainless-steel surfaces but led to an approximately one order of magnitude larger wear rate of the steel counter-body, primarily due to the presence of hard bulges around the textured patterns. Overall, the crosshatch pattern showed better oil retention capacity and lower friction in combination with different vegetable oils, thus making it a promising choice for improving tribological performance in various environmentally friendly applications.
Keywords: tribology, stainless steel, vegetable oil lubrication, MoS2 nanotubes
Published in DiRROS: 02.02.2024; Views: 131; Downloads: 75
.pdf Full text (4,56 MB)
This document has many files! More...

8.
9.
10.
Elucidating nucleation stages of transgranular stress corrosion cracking in austenitic stainless steel by in situ electrochemical and optical methods
Sarmiento Klapper Helmuth, Bojan Zajec, Andreas Heyn, Andraž Legat, 2019, original scientific article

Abstract: The pitting and environmentally assisted cracking resistance of austenitic stainless steels (SS) is challenged in several industrial applications particularly those involving hot chloride-concentrated streams. Directional drilling used in the oil and gas exploration is one of these applications. Indeed, high strength CrMn-SS commonly used in drilling technology have a high tendency to fail by stress corrosion cracking (SCC) preceded by localized corrosion once subjected to highly chloride-concentrated drilling fluids at elevated temperatures. A comprehensive understanding regarding the mechanisms governing the transition from pitting into SCCis not currently available, though. Therefore, mechanistic aspects such as the effect of loading conditions on pit nucleation and repassivation as well as the synergistic effect between pit stabilization and the nucleation of a stress corrosion crack are of great practical significance. To investigate this an electrochemical-, optical- and mechanical- monitored SCC test was conducted on a CrMn-SS in an alkaline brine at elevated temperature. The transition from metastable to stable pitting and subsequently to SCC in this system was documented in-situ for the first time. Results supported H.S. Isaacs postulates regarding the interpretation of electrochemical signals and demonstrated that loading conditions affect pit nucleation and repassivation leading to a higher susceptibility of the material to pitting, which preceded SCC.
Keywords: pitting corrosion, stress corrosion cracking, monitoring, elektrochemical noise, austenitic stainless steel
Published in DiRROS: 23.11.2023; Views: 222; Downloads: 179
.pdf Full text (2,28 MB)
This document has many files! More...

Search done in 0.29 sec.
Back to top