Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "keywords" (X-ray computed microtomography) .

1 - 2 / 2
First pagePrevious page1Next pageLast page
1.
Electrochemical cycling behaviour and shape changes of Zn electrodes in mildly acidic aqueous electrolytes containing quaternary ammonium salts
Benedetto Bozzini, Marco Boniardi, Tommaso Caielli, Andrea Casaroli, Elisa Emanuele, Lucia Mancini, Nicola Sodini, Jacopo Strada, 2023, original scientific article

Abstract: Secondary Zn–based batteries are a valid alternative to Li for stationary storage, but commercial devices are not yet available, chiefly owing to anode shape-change and passivation issues. Mildly acidic aqueous solutions are actively studied, since they seem to limit unstable growth of Zn, with respect to the alkaline ones, customary for primary batteries. Additives can further improve the performance of mildly acidic electrolytes. In this work we focus on the impact of a series of quaternary ammonium salts (TBAB, CTAB, DMDTDAB, BDMPAC, BPPEI, PDADMAC), selected to represent a comprehensive range of molecular functionalities. Electrochemical measurements (cyclic voltammetry, chronopotentiometry and galvanostatic-cycling in split-cells), combined with 2D and 3D imaging techniques (SEM, stereomicroscopy and in situ tomography) were adopted for the assessment Zn behaviour. This multi-technique approach pinpointed TBAB as the single most effective additive for low-current density operation, while at high current densities the additive-free electrolyte allows better cycling performance, coherently with similar results for alkaline electrolytes.
Keywords: battery, electrolyte, electrochemical measurements, quaternary Ammomium salt, X-ray computed microtomography, mobility
Published in DiRROS: 06.07.2023; Views: 399; Downloads: 176
.pdf Full text (2,52 MB)
This document has many files! More...

2.
Characterizing steel corrosion in different alkali-activated mortars
Nina Gartner, Miha Hren, Tadeja Kosec, Andraž Legat, 2021, original scientific article

Abstract: Alkali-activated materials (AAMs) present a promising potential alternative to ordinary Portland cement (OPC). The service life of reinforced concrete structures depends greatly on the corrosion resistance of the steel used for reinforcement. Due to the wide range and diverse properties of AAMs, the corrosion processes of steel in these materials is still relatively unknown. Three different alkali-activated mortar mixes, based on fly ash, slag, or metakaolin, were prepared for this research. An ordinary carbon-steel reinforcing bar was installed in each of the mortar mixes. In order to study the corrosion properties of steel in the selected mortars, the specimens were exposed to a saline solution in wet/dry cycles for 17 weeks, and periodic electrochemical impedance spectroscopy (EIS) measurements were performed. The propagation of corrosion damage on the embedded steel bars was followed using X-ray computed microtomography (XCT). Periodic EIS measurements of the AAMs showed different impedance response in individual AAMs. Moreover, these impedance responses also changed over the time of exposure. Interpretation of the results was based on visual and numerical analysis of the corrosion damages obtained by XCT, which confirmed corrosion damage of varying type and extent on steel bars embedded in the tested AAMs.
Keywords: corrosion, alkali-activated mortars, steel reinforcement, electrochemical impedance spectroscopy, X-ray computed microtomography, visual analysis
Published in DiRROS: 05.07.2023; Views: 390; Downloads: 182
.pdf Full text (7,00 MB)
This document has many files! More...

Search done in 0.04 sec.
Back to top