Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "work type" (1) AND "fulltext" AND "organization" (Slovenian National Building and Civil Engineering Institute) .

271 - 280 / 304
First pagePrevious page22232425262728293031Next pageLast page
271.
In-plane seismic behaviour of ashlar three-leaf stone masonry walls : verifying performance limits
Meta Kržan, Vlatko Bosiljkov, 2021, original scientific article

Abstract: In light of the forthcoming second generation Eurocodes (EC), the results of conducted systematic in-plane cyclic and compressive tests on three-leaf stone masonry walls are discussed following new requirements and provisions. The new proposal for EC8-3 for existing buildings is based on partial factors safety approach, though it considers different uncertainties in defining input parameters for effective seismic performance-based assessment. Prior to its application, massive calibration effort will be needed since there is no standardized method for shear testing of masonry walls. In this paper, the performance limit states damage, resistance, and displacement capacities from conducted test results were evaluated and assessed through comparison with analytical solutions and imposed limit values, as stated in existing codes. The test results provide a much higher deformation capacity than the limits provided in both existing and new proposal of EC8-3 as well as those in the ASCE code provisions. The reason for this lies in the soft, "ductile" mortar for which the presumed resistance according to code provisions should be significantly higher when considering good quality ashlar three-leaf stone masonry.
Keywords: historical masonry, multi-leaf stone masonry, mechanical properties, compression tests, in-plane shear tests, failure mechanisms, drift limits, boundary conditions
Published in DiRROS: 19.05.2023; Views: 332; Downloads: 169
.pdf Full text (4,47 MB)
This document has many files! More...

272.
Influence of the deep cryogenic treatment on AISI 52100 and AISI D3 steelʼs corrosion resistance
Patricia Jovičević Klug, Tjaša Kranjec, Matic Klug Jovičević, Tadeja Kosec, Bojan Podgornik, 2021, original scientific article

Abstract: The effect of deep cryogenic treatment (DCT) on corrosion resistance of steels AISI 52100 and AISI D3 is investigated and compared with conventional heat-treated counterparts. DCTʼs influence on microstructural changes is subsequently correlated to the corrosion resistance. DCT is confirmed to reduce the formation of corrosion products on steelsʼ surface, retard the corrosion products development and propagation. DCT reduces surface cracking, which is considered to be related to modified residual stress state of the material. DCTʼs influence on each steel results from the altered microstructure and alloying element concentration that depends on steel matrix and type. This study presents DCT as an effective method for corrosion resistance alteration of steels.
Keywords: steel, deep cryogenic treatment, corrosion, Raman, open access
Published in DiRROS: 19.05.2023; Views: 319; Downloads: 229
.pdf Full text (3,13 MB)
This document has many files! More...

273.
Effect of laser texturing pattern on Ti6Al4Vtribocorrosion in a physiological solution
Marjetka Conradi, Tadeja Kosec, Bojan Podgornik, Aleksandra Kocijan, Janez Kovač, Damjan Klobčar, 2022, original scientific article

Abstract: Laser texturing is a process that alters a material’s surface properties by modifying its morphology, which can improve properties like adherence, wettability, thermal and electrical conductivity and friction. Here, the effect of laser texturing was studied on an alpha-beta titanium alloy (Ti6Al4V) biomedical material. Two types of patterned surfaces, cross-hatch with varying scan-line separations, Dx = 100, 180 and 280 μm and dimples of 200 μm size, were prepared on the surface of alpha-beta titanium alloy by laser technology. Prepared samples were characterised for their surface properties, such as corrosion, wear-induced corrosion, friction and wettability. Electrochemical and tribocorrosion properties in a physiological solution were studied on the samples with different texture densities of cross-hatch pattern and dimples and compared to the as-received alpha-beta titanium alloy surface. Corrosion rate decreased for laser-textured samples, especially for cross-hatch texture (down to 1 μm/year for Dx = 180 μm) when compared to the as-received alpha-beta titanium alloy surface due to the changed laser-induced surface film and wetting properties. Friction coefficient slightly decreased for all laser-textured surfaces, most noticeably for cross-hatch patterns, from 0.38 (as-received) down to 0.34 (Dx = 180 and 280 μm). The main contribution to total wear in physiological solution increased due to the mechanical wear, which is governed by the removal of the surface oxide layer induced by laser texturing.
Keywords: TiAIV, laser texturing, tribocorrosion, open access
Published in DiRROS: 17.05.2023; Views: 299; Downloads: 122
.pdf Full text (2,19 MB)
This document has many files! More...

274.
An electrochemical and spectroscopic study of surfaces on bronze sculptures exposed to urban environment
Dajana Mikić, Helena Otmačić Ćurković, Tadeja Kosec, Neven Peko, 2021, original scientific article

Abstract: Polluted urban environment enhances dissolution of patina and underlying bronze material of recent and historical bronze sculptures exposed outdoors. In this work, two bronze statues, situated in one of the most polluted Croatian cities, were examined in order to characterize composition of patina and its electrochemical stability. The composition of patina on several positions on each sculpture was determined by EDS, Raman spectroscopy, and FTIR measurements. Electrochemical impedance spectroscopy measurements were conducted in order to evaluate the corrosion stability of both patina and underlying bronze. Results obtained in this work show that the two examined bronze sculptures were covered with patina layer that was mainly composed of copper sulfides and sulphates, which is in accordance with the high concentrations of H2S and SO2 in the atmosphere. However, the variations in the appearance of FTIR and Raman spectra revealed that the amount of each species differed from spot to spot, as well as the fact that other compounds, such as carbonates, were present at some areas. This difference in patina composition was reflected in electrochemical behavior as observed by electrochemical impedance spectroscopy.
Keywords: bronze, corrosion, spectroscopy, FTIR, Raman, EIS, open access
Published in DiRROS: 16.05.2023; Views: 310; Downloads: 183
.pdf Full text (4,82 MB)
This document has many files! More...

275.
Innovative circular economy models for the european pulp and paper industry : a reference framework for a resource recovery scenario
Amaia Sopelana, Camille Auriault, Anurag Bansal, Karmen Fifer Bizjak, Helena Paiva, Christian Maurice, Gunnar Westin, Javier Rios, Asier Oleaga, Antonio Cañas, 2021, original scientific article

Abstract: According to recent literature in the field of sustainability, the circular economy (CE) appears to be a thriving opportunity for creating new businesses, although less attention has been paid to the form in which its principles fit into a comprehensive framework that enables companies to design it in a practical way. This paper presents the methodology that has been adopted to pave the way to a coherent reference framework for circular business model innovation and its outstanding design and implementation, taking into consideration the entire value and supply chain. A unique analysis of recent innovations in circular economy models is provided herein, together with an exhaustive analysis of those elements that enable or hinder their implementation. The main interactions among all those critical elements influencing how organisations innovate and operate cooperatively within a CE ecosystem are also evaluated. In addition, a study of five industrial cases in the pulp and paper industry allowed searching for industrial insights and empirical evidence of the relevance of those elements, including observation, document analysis, and interviews. Lastly, the main outcomes of this research are illustrated using the CE reference framework designed when applied to the aforementioned industrial cases, and relevant insights into future improvements are also provided.
Keywords: circular economy business models, pulp and paper industry, construction sector, open access
Published in DiRROS: 12.05.2023; Views: 327; Downloads: 184
.pdf Full text (1,42 MB)
This document has many files! More...

276.
Radiological and physico-chemical characterization of red mud as an Al-containing precursor in inorganic binders for the building industry
Ljiljana Kljajević, Miljana Mirković, Sabina Dolenec, Katarina Šter, Mustafa Hadžalić, Ivana Vukanac, Miloš Nenadović, 2021, original scientific article

Abstract: The potential re-use of red mud in the building and construction industry has been the subject of research of many scientists. The presented research is a contribution to the potential solution of this environmental issue through the synthesis of potential construction materials based on red mud. A promising way of recycling these secondary raw materials is the synthesis of alkali-activated binders or alkali activated materials. Alkali-activated materials or inorganic binders based on red mud are a new class of materials obtained by activation of inorganic precursors mainly constituted by silica, alumina and low content of calcium oxide. Since red mud contains radioactive elements like 226Ra and 232Th, this may be a problem for its further utilization. The content of naturally occurring radionuclides in manufactured material products with potential application in the building and construction industry is important from the standpoint of radiation protection. Gamma radiation of the primordial radionuclides, 40K and members of the uranium and thorium series, increases the external gamma dose rate. However, more and more precedence is being given to limiting the radiological dose originating from building materials on the population these days. The aim of this research was to investigate the possible influence of alkali activation-polymerization processes on the natural radioactivity of alkali activated materials synthesized by red mud (BOKSIT a. d. Milići, Zvornik, Bosnia and Herzegovina) and their structural properties. This research confirmed that during the polymerization process the natural radioactivity was reduced, and that the process of alkali activation of raw materials has an influence on natural radioactivity of synthesized materials.
Keywords: red mud, inorganic binder, DRIFT, natural radioactivity, gamma index, building industry
Published in DiRROS: 12.05.2023; Views: 385; Downloads: 116
.pdf Full text (962,61 KB)
This document has many files! More...

277.
Potential usage of hybrid polymers binders based on fly ash with the addition of PVA with satisfying mechanical and radiological properties
Miljana Mirković, Ljiljana Kljajević, Sabina Dolenec, Miloš Nenadović, Vladimir Pavlović, Milica Rajačić, Snežana B. Nenadović, 2021, original scientific article

Abstract: Since recycled technologies usage is mandatory for environmental safety, and in this regard, it is important to examine new materials that can be used in construction and are primarily produced from fly ash. In addition to characteristics such as hardness and compressive strength, the given materials must also be radiologically and environmentally safe. The main concept of engineered geopolymer gel composites based on fly ash residues is focused on developing binder materials via gel formation processes that can replace ordinary cement materials. This study is unique in researching the potential use of fly ash from the Nikola Tesla thermal power plant in Serbia, where the hybrid geopolymeric materials synthesized from fly ash are experimentally examined with the addition 1 wt% and 2 wt% of polyvinyl alcohol (PVA). This paper aims to investigate the structural, morphological, mechanical, and radiological properties of hybrid materials with the addition of PVA and without additive in the period of ageing for 28 days at room temperature. The phase composition was investigated using X-ray powder diffraction (XRPD) analysis, while morphological characteristics of these materials were examined using scanning electron microscopy and energy dispersive X-ray analysis (SEM-EDS). Vibrational spectra of obtained samples are investigated using diffuse reflectance infrared Fourier transform (DRIFT) and Fourier transform infrared (FTIR) techniques. The hardness and compressive strength are also examined, indicating that the 1 wt% addition in geopolymeric matrix results in the best mechanical properties. Radiological measurements of investigated all geopolymer samples show decreasing activity concentrations of radionuclides for 50% compared to fly ash.
Keywords: geopolymer gel, inorganic binders, hybrid materials, fly ash, radiological properties, strength, open access
Published in DiRROS: 12.05.2023; Views: 304; Downloads: 142
.pdf Full text (1,61 MB)
This document has many files! More...

278.
Freeze-casting of highly porous cellulose-nanofiber-reinforced γ-Al2O3 monoliths
Hermina Hudelja, Thomas Konegger, Bernd Wicklein, Janko Čretnik, Farid Akhtar, Andraž Kocjan, 2021, original scientific article

Abstract: Freeze-casting is a powerful consolidation technique for the fabrication of highly porous and layered-hybrid materials, including ceramic-metal composites, and porous scaffolds for catalysis, bone substitutes and high- performance membranes. The aqueous suspensions to be freeze-casted usually contain dense particles facilitating macroporous, layered ceramics with dense (nonporous) struts. In the present study, hierarchical macro-mesoporous alumina (HMMA) monoliths were successfully prepared by freeze-casting of aqueous suspensions containing hierarchically-assembled, mesoporous γ‒Al2O3 (MA) powder and cellulose nanofibers (CNF). As- prepared monoliths were ultra-porous (93.1–99.2%), had low densities (0.01–0.25 g/cm3), and displayed relatively high surface areas (91–134 m2/g), but were still remarkably rigid with high compressive strengths (up to 52 kPa). Owing to the columnar porosity and mesoporous nature of the struts the freeze-casted HMMA monoliths exhibited high permeability and high thermal insulation, the latter ranging from 0.039 W/m∙K to 0.071 W/m∙K, depending on pore orientation.
Keywords: cellulose nanofiber, freeze-casting, gamma alumina, hierarchical porosity, insulative materials
Published in DiRROS: 09.05.2023; Views: 302; Downloads: 210
.pdf Full text (2,99 MB)
This document has many files! More...

279.
Investigation of surface treatment effects on the environmentally-assisted cracking behaviour of Alloy 182 in boiling water reactor environment
Zaiqing Que, Bojan Zajec, Stefan Ritter, Tommi Seppänen, Timo Saario, Aki Toivonen, Aleksandra Treichel, Valentin Lautaru, Fabio Scenini, 2022, original scientific article

Abstract: Surface treatments of primary circuit components in light water reactors are regarded as possible ways to mitigate environmentally-assisted cracking (EAC). To date, it is not fully conclusive which surface condition is suitable to reduce the EAC initiation susceptibility. Constant extension rate tensile (CERT) tests were performed by several labs using flat tapered tensile specimens with different surface conditions (ground, industrial face milled, advanced face milled and shot peened), exposed to a boiling water reactor normal water chemistry environment at 288°C. Despite some scatter in the results, the CERT tests revealed that the EAC initiation susceptibility seems lowest for the advanced face milled surface and highest for the shot peened surface. However, it must be emphasised that the differences were moderate and that the surprising behaviour of the shot peened surface can be explained. The mechanical grinding of the surface did not significantly retard EAC initiation compared to industrial face milling.
Keywords: crack initiation, environmentally-assisted cracking, Alloy 182, surface machining, boiling water reactor, open access
Published in DiRROS: 05.05.2023; Views: 367; Downloads: 157
.pdf Full text (4,12 MB)
This document has many files! More...

280.
Bioleaching process for copper extraction from waste in alkaline and acid medium
Ivica Ristović, Darina Štyriaková, Iveta Štyriakova, Jaroslav Šuba, Emilija Širadović, 2022, original scientific article

Abstract: Flotation wastes are becoming a valuable secondary raw material and source of many metals and semimetals worldwide with the possibilities of industrial recycling. The flotation tailings contain oxide and sulfide minerals that have not been sufficiently stabilized and form acidic mine waters, which in turn contaminate groundwater, rivers, and reservoi6sediments. An effective way to recycle these mine wastes is to recover the metals through leaching. While the focus is on acid bioleaching by iron- and sulfur-oxidizing bacteria, alkaline leaching, and the removal of iron- containing surface coatings on sulfide minerals contribute significantly to the overall environmental efficiency of leaching. For this study, static and percolate bioleaching of copper from flotation waste at the Bor copper mine in Serbia was investigated in alkaline and then acidic environments. The aim of the study was to verify the effect of alkaline pH and nutrient stimulation on the bioleaching process and element extraction. A sample was taken from a mine waste site, which was characterized by XRF analyses. The concentration of leached copper was increased when copper oxide minerals dissolved during alkaline bioleaching. The highest copper yield during alkaline bioleaching was achieved after 9 days and reached 67%. The addition of nutrients in acidic medium enhanced the degradation of sulfide minerals and increased Cu recovery to 74%, while Fe and Ag recoveries were not significantly affected. Combined bioleaching with alkaline media and iron- and sulfur-oxidizing bacteria in acidic media should be a good reference for ecological Cu recovery from copper oxide and sulfide wastes.
Keywords: copper, alkaline, acidic bioleaching, secondary raw materials, open access
Published in DiRROS: 05.05.2023; Views: 322; Downloads: 164
.pdf Full text (3,29 MB)
This document has many files! More...

Search done in 0.68 sec.
Back to top