Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "work type" (1) AND "fulltext" AND "organization" (Institute of Metals and Technology) .

71 - 80 / 92
First pagePrevious page12345678910Next pageLast page
71.
Recovery study of gold nanoparticle markers from lateral flow immunoassays
Tilen Švarc, Peter Majerič, Darja Feizpour, Žiga Jelen, Matej Zadravec, Timi Gomboc, Rebeka Rudolf, 2023, original scientific article

Abstract: Lateral flow immunoassays (LFIAs) are a simple diagnostic device used to detect targeted analytes. Wasted and unused rapid antigen lateral flow immunoassays represent mass waste that needs to be broken down and recycled into new material components. The aim of this study was to recover gold nanoparticles that are used as markers in lateral flow immunoassays. For this purpose, a dissolution process with aqua regia was utilised, where gold nanoparticles were released from the lateral flow immunoassay conjugate pads. The obtained solution was then concentrated further with gold chloride salt (HAuCl4) so that it could be used for the synthesis of new gold nanoparticles in the process of ultrasonic spray pyrolysis (USP). Various characterisation methods including scanning electron microscopy, transmission electron microscopy, ultraviolet-visible spectroscopy and optical emission spectrometry with inductively coupled plasma were used during this study. The results of this study showed that the recovery of gold nanoparticles from lateral flow immunoassays is possible, and the newly synthesised gold nanoparticles represent the possibility for incorporation into new products.
Keywords: gold nanoparticles, recovery, LFIA, ultrasonic spray pyrolysis, characterisation
Published in DiRROS: 02.02.2024; Views: 153; Downloads: 70
.pdf Full text (6,25 MB)
This document has many files! More...

72.
Influence of oil viscosity on the tribological behavior of a laser-textured Ti6Al4V alloy
Marjetka Conradi, Aleksandra Kocijan, Bojan Podgornik, 2023, original scientific article

Abstract: Laser texturing with a dimple pattern was applied to modify a Ti6Al4V alloy at the micro level, aiming to improve its friction and wear resistance in combination with oil lubrication to optimize the performance in demanding industrial environments. The tribological analysis was performed on four different dimple-textured surfaces with varying dimple size and dimple-to-dimple distance and under lubrication with three different oils, i.e., T9, VG46, and VG100, to reflect the oil viscosity’s influence on the friction/wear of the laser-textured Ti6Al4V alloy. The results show that the surfaces with the highest texture density showed the most significant COF reduction of around 10% in a low-viscosity oil (T9). However, in high-viscosity oils (VG46 and VG100), the influence of the laser texturing on the COF was less pronounced. A wear analysis revealed that the laser texturing intensified the abrasive wear, especially on surfaces with a higher texture density. For low-texturing-density surfaces, less wear was observed for low- and medium-viscosity oils (T9 and VG46). For medium-to-high-texturing densities, the high-viscosity oil (VG100) provided the best contact conditions and wear results. Overall, reduced wear, even below the non-texturing case, was observed for sample 50–200 in VG100 lubrication, indicating the combined effect of oil reservoirs and increased oil-film thickness within the dimples due to the high viscosity.
Keywords: oil lubrication, surface modification, Ti-based alloy, tribology
Published in DiRROS: 01.02.2024; Views: 179; Downloads: 73
.pdf Full text (4,00 MB)
This document has many files! More...

73.
74.
75.
76.
77.
78.
79.
Ultra-high strenght TWIP steel with high chromium content
Pavel Podaný, Tomáš Studecký, Tomas Gregor, Radek Prochazka, Aleksandra Kocijan, 2023, original scientific article

Abstract: A new ultra-high strength steel with a fully austenitic microstructure and twinning-induced plasticity (TWIP) effect has been developed. TWIP effect gives this steel a good combination of high strength of over 1000 MPa and ductility of over 35%. This new steel has a high chromium content, which increases its corrosion resistance. By combining cold rolling and annealing, the steel has achieved a very fine austenitic microstructure with an average grain diameter of 2.85 µm. This steel could be used for structural applications or components that need to withstand high levels of stress, deformation and corrosion environment.
Keywords: TWIP steels, corrosion resistance, microstructure, tensile strength, plasticity
Published in DiRROS: 31.01.2024; Views: 199; Downloads: 80
URL Link to file
This document has many files! More...

80.
Improving the surface properties of additive-manufactured Inconel 625 by plasma nitriding
Danijela Anica Skobir Balantič, Črtomir Donik, Bojan Podgornik, Aleksandra Kocijan, Matjaž Godec, 2023, original scientific article

Abstract: As a surface-hardening technique, plasma nitriding is a common procedure for improving the properties of conventional Ni-based alloys. The diffusion of nitrogen hardens a layer on the surface of the alloy, leading to better wear resistance and a higher coefficient of friction, as well as a higher surface hardness. This study reports the effect of plasma nitriding on additive-manufactured (AM) Inconel 625 (IN625) compared to its conventional manufactured and nitrided counterparts. The samples produced with the laser powder-bed fusion (LPBF) process were subsequently plasma nitrided in the as-built condition, stress-relief annealed at 870 °C and solution treated at 1050 °C. The plasma nitridings were carried out at 430 °C and 500 °C for 15 h. The growth kinetics of the nitride layer of the AM samples depends on the prior heat treatments and is faster in the as-built state due to the specific cellular structure. The lower nitriding temperature leads to the formation of expanded austenite in the nitride layer, while at the higher nitriding temperature, the expanded austenite decomposes and CrN precipitation occurs. The XRD and SEM analyses confirmed the presence of two layers: the surface layer and the diffusion layer beneath. The lower nitriding temperature caused the formation of expanded austenite or a combination of expanded austenite and CrN. The higher nitriding temperature led to the decomposition of the expanded austenite and to the formation/precipitation of CrN. The higher nitriding temperature also decreased the corrosion resistance slightly due to the increased number of precipitated Cr-nitrides. On the other hand, the wear resistance was significantly improved after plasma nitriding and was much less influenced by the nitriding temperature.
Keywords: additive manufacturing, powder-bed fusion, plasma nitriding, expanded austenite, wear and corrosion resistance, Ni-based alloy
Published in DiRROS: 31.01.2024; Views: 183; Downloads: 79
.pdf Full text (7,98 MB)
This document has many files! More...

Search done in 0.69 sec.
Back to top