Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "keywords" (muscle) .

11 - 15 / 15
First pagePrevious page12Next pageLast page
11.
Sarcopenia parameters in active older adults – an eight-year longitudinal study
Kaja Teraž, Uroš Marušič, Miloš Kalc, Boštjan Šimunič, Primož Pori, Bruno Grassi, Stefano Lazzer, Marco Vicenzo Narici, Mojca Gabrijelčič Blenkuš, Pietro Enrico Di Prampero, Carlo Reggiani, Angelina Passaro, Gianni Biolo, Mladen Gasparini, Rado Pišot, 2023, original scientific article

Abstract: Background Sarcopenia is a common skeletal muscle syndrome that is common in older adults but can be mitigated by adequate and regular physical activity. The development and severity of sarcopenia is favored by several factors, the most influential of which are a sedentary lifestyle and physical inactivity. The aim of this observational longitudinal cohort study was to evaluate changes in sarcopenia parameters, based on the EWGSOP2 definition in a population of active older adults after eight years. It was hypothesized that selected active older adults would perform better on sarcopenia tests than the average population. Methods The 52 active older adults (22 men and 30 women, mean age: 68.4±5.6 years at the time of their first evaluation) participated in the study at two time points eight-years apart. Three sarcopenia parameters were assessed at both time points: Muscle strength (handgrip test), skeletal muscle mass index, and physical performance (gait speed), these parameters were used to diagnose sarcop0enia according to the EWGSOP2 definition. Additional motor tests were also performed at follow-up measurements to assess participants’ overall fitness. Participants self-reported physical activity and sedentary behavior using General Physical Activity Questionnaire at baseline and at follow-up measurements. Results In the first measurements we did not detect signs of sarcopenia in any individual, but after 8 years, we detected signs of sarcopenia in 7 participants. After eight years, we detected decline in ; muscle strength (-10.2%; p<.001), muscle mass index (-5.4%; p<.001), and physical performance measured with gait speed (-28.6%; p<.001). Similarly, self-reported physical activity and sedentary behavior declined, too (-25.0%; p=.030 and −48.5%; p<.001, respectively). Conclusions Despite expected lower scores on tests of sarcopenia parameters due to age-related decline, participants performed better on motor tests than reported in similar studies. Nevertheless, the prevalence of sarcopenia was consistent with most of the published literature. Trial registration The clinical trial protocol was registered on ClinicalTrials.gov, identifier: NCT04899531
Keywords: elderly, physical activities, sedentary behavior, skeletal muscle disorder, sarcopenia
Published in DiRROS: 29.05.2023; Views: 366; Downloads: 184
.pdf Full text (1,47 MB)
This document has many files! More...

12.
13.
Inter-person differences in isometric coactivations of triceps surae and tibialis anterior decrease in young, but not in older adults after 14 days of bed rest
Matjaž Divjak, Gašper Sedej, Nina Murks, Mitja Gerževič, Uroš Marušič, Rado Pišot, Boštjan Šimunič, Aleš Holobar, 2022, original scientific article

Abstract: We examined activation patterns of the gastrocnemius medialis (GM), gastrocnemius lateralis (GL), soleus (SO), and tibialis anterior (TA) muscles in eight older (58.4 ± 3.3 years) and seven young (23.1 ± 2.9 years) participants, before and after 14 days of horizontal bed rest. Visual feedback on the exerted muscle torque was provided to the participants. The discharge patterns of individual motor units (MUs) were studied in three repetitions of isometric plantar flexion at 30 and 60% of Maximum Voluntary Contraction (MVC), before, and 1 day after the 14-day bed rest, respectively. In the GL and GM muscles, the older participants demonstrated higher MU discharge rates than the young, regardless of the contraction level, both before and after the bed rest. In the TA and SO muscles, the differences between the older and young participants were less consistent. Detailed analysis revealed person-specific changes in the MU discharge rates after the bed rest. To quantify the coactivation patterns we calculated the correlation coefficients between the cumulative spike trains of identified MUs from each muscle, and measured the root mean square difference of the correlation coefficients between the trials of the same session (intra-session variability) and between different sessions (inter-session variability) in each participant (intra-person comparison) and across participants (inter-person comparison). In the intra-person comparison, the inter-session variability was higher than the intra-session variability, either before or after the bed rest. At 60% MVC torque, the young demonstrated higher inter-person variability of coactivation than the older participants, but this variability decreased significantly after the bed rest. In older participants, inter-person variability was consistently lower at 60% than at 30% MVC torque. In young participants, inter-person variability became lower at 60% than at 30% MVC torque only after the bed rest. Precaution is required when analyzing the MU discharge and coactivation patterns, as individual persons demonstrate individual adaptations to aging or bed rest.
Keywords: high density electromyography, muscle disuse, motor units, discharge rate, aging
Published in DiRROS: 05.09.2022; Views: 637; Downloads: 358
.pdf Full text (4,31 MB)
This document has many files! More...

14.
The aging muscle in experimental bed rest : ǂa ǂsystematic review and meta-analysis
Filippo Giorgio Di Girolamo, Nicola Fiotti, Zoran Milanović, Roberta Situlin, Filippo Mearelli, Pierandrea Vinci, Boštjan Šimunič, Rado Pišot, Marco Vicenzo Narici, Gianni Biolo, 2021, review article

Abstract: Background: Maintaining skeletal muscle mass and function in aging is crucial for preserving the quality of life and health. An experimental bed rest (BR) protocol is a suitable model to explore muscle decline on aging during inactivity. Objective: The purpose of this systematic review and meta-analysis was, therefore, to carry out an up-to-date evaluation of bed rest, with a specific focus on the magnitude of effects on muscle mass, strength, power, and functional capacity changes as well as the mechanisms, molecules, and pathways involved in muscle decay. Design: This was a systematic review and meta-analysis study. Data sources: We used PubMed, Medline; Web of Science, Google Scholar, and the Cochrane library, all of which were searched prior to April 23, 2020. A manual search was performed to cover bed rest experimental protocols using the following key terms, either singly or in combination: %Elderly Bed rest,% %Older Bed rest,% %Old Bed rest,% %Aging Bed rest,% %Aging Bed rest,% %Bed-rest,% and %Bedrest%. Eligibility criteria for selecting studies: The inclusion criteria were divided into four sections: type of study, participants, interventions, and outcome measures. The primary outcome measures were: body mass index, fat mass, fat-free mass, leg lean mass, cross-sectional area, knee extension power, cytokine pattern, IGF signaling biomarkers, FOXO signaling biomarkers, mitochondrial modulation biomarkers, and muscle protein kinetics biomarkers. Results: A total of 25 studies were included in the qualitative synthesis, while 17 of them were included in the meta-analysis. In total, 118 healthy elderly volunteers underwent 5-, 7-, 10-, or 14-days of BR and provided a brief sketch on the possible mechanisms involved. In the very early phase of BR, important changes occurred in the skeletal muscle, with significant loss of performance associated with a lesser grade reduction of the total body and muscle mass. Meta-analysis of the effect of bed rest on total body mass was determined to be small but statistically significant (ES = %0.45, 95% CI: %0.72 to %0.19, P < 0.001). Moderate, statistically significant effects were observed for total lean body mass (ES = %0.67, 95% CI: %0.95 to %0.40, P < 0.001) after bed rest intervention. Overall, total lean body mass was decreased by 1.5 kg, while there was no relationship between bed rest duration and outcomes (Z = 0.423, p = 672). The meta-analyzed effect showed that bed rest produced large, statistically significant, effects (ES = %1.06, 95% CI: %1.37 to %0.75, P < 0.001) in terms of the knee extension power. Knee extension power was decreased by 14.65 N/s. In contrast, to other measures, meta-regression showed a significant relationship between bed rest duration and knee extension power (Z = 4.219, p < 0.001). Moderate, statistically significant, effects were observed after bed rest intervention for leg muscle mass in both old (ES = %0.68, 95% CI: %0.96 to %0.40, P < 0.001) and young (ES = %0.51, 95% CI: %0.80 to %0.22, P < 0.001) adults. However, the magnitude of change was higher in older (MD = %0.86 kg) compared to younger (MD = %0.24 kg) adults. Conclusion: Experimental BR is a suitable model to explore the detrimental effects of inactivity in young adults, old adults, and hospitalized people. Changes in muscle mass and function are the two most investigated variables, and they allow for a consistent trend in the BR-induced changes. Mechanisms underlying the greater loss of muscle mass and function in aging, following inactivity, need to be thoroughly investigated.
Keywords: bed rest, aging, muscles, muscle physiopathology, muscle function
Published in DiRROS: 26.08.2021; Views: 1729; Downloads: 931
.pdf Full text (1,32 MB)
This document has many files! More...

15.
Neuromuscular junction instability and altered intracellular calcium handling as early determinants of force loss during unloading in humans
Elena Monti, Carlo Reggiani, Martino V. Franchi, Luana Toniolo, Marco Sandri, Andrea Armani, Sandra Zampieri, Boštjan Šimunič, Rado Pišot, Marco Vicenzo Narici, 2021, original scientific article

Abstract: Unloading induces rapid skeletal muscle atrophy and functional decline. Importantly, force is lost at a much higher rate than muscle mass. We aimed to investigate the early determinants of the disproportionate loss of force compared to that of muscle mass in response to unloading. Ten young participants underwent 10 days of bed rest (BR). At baseline (BR0) and at 10 days (BR10), quadriceps femoris (QF) volume (VOL) and isometric maximum voluntary contraction (MVC) were assessed. At BR0 and BR10 blood samples and biopsies of vastus lateralis (VL) muscle were collected. Neuromuscular junction (NMJ) stability and myofibre innervation status were assessed, together with single fibre mechanical properties and sarcoplasmic reticulum (SR) calcium handling. From BR0 to BR10, QFVOL and MVC decreased by 5.2% (P = 0.003) and 14.3% (P < 0.001), respectively. Initial and partial denervation was detected from increased neural cell adhesion molecule (NCAM)-positive myofibres at BR10 compared with BR0 (+3.4%, P = 0.016). NMJ instability was further inferred from increased C-terminal agrin fragment concentration in serum (+19.2% at BR10, P = 0.031). Fast fibre cross-sectional area (CSA) showed a trend to decrease by 15% (P = 0.055) at BR10, while single fibre maximal tension (force/CSA) was unchanged. However, at BR10 SR Ca2+ release in response to caffeine decreased by 35.1% (P < 0.002) and 30.2% (P < 0.001) in fast and slow fibres, respectively, pointing to an impaired excitation%contraction coupling. These findings support the view that the early onset of NMJ instability and impairment in SR function are eligible mechanisms contributing to the greater decline in muscle force than in muscle size during unloading.
Keywords: Ca2+ dynamics, muscle atrophy, neuromuscular junction instability, sarcoplasmic reticulum, single fibre atrophy, single fibre contractile impairment, unloading
Published in DiRROS: 16.06.2021; Views: 1138; Downloads: 1105
.pdf Full text (3,39 MB)
This document has many files! More...

Search done in 0.14 sec.
Back to top