Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "keywords" (drought) .

11 - 13 / 13
First pagePrevious page12Next pageLast page
11.
Different belowground responses to elevated ozone and soil water deficit in three European oak species (Quercus ilex, Q. pubescens and Q. robur)
Tanja Mrak, Ines Štraus, Tine Grebenc, Jožica Gričar, Yasutomo Hoshika, Giulia Carriero, Elena Paoletti, Hojka Kraigher, 2019, original scientific article

Abstract: Effects on roots due to ozone and/or soil water deficit often occur through diminished belowground allocation of carbon. Responses of root biomass, morphology, anatomy and ectomycorrhizal communities were investigated in seedlings of three oak species: Quercus ilex L., Q. pubescens Willd. and Q. robur L., exposed to combined effects of elevated ozone (ambient air and 1.4 x ambient air) and water deficit (100% and 10% irrigation relative to field capacity) for one growing season at a free-air ozone exposure facility. Effects on root biomass were observed as general reduction in coarse root biomass by -26.8 % and in fine root biomass by -13.1 % due to water deficit. Effect on coarse root biomass was the most prominent in Q. robur (-36.3 %). Root morphological changes manifested as changes in proportions of fine root (<2 mm) diameter classes due to ozone and water deficit in Q. pubescens and due to water deficit in Q. robur. In addition, reduced fine root diameter (-8.49 %) in Q. robur was observed under water deficit. Changes in root anatomy were observed as increased vessel density (+18.5 %) due to ozone in all three species, as reduced vessel tangential diameter (-46.7 %) in Q. ilex due to interaction of ozone and water, and as generally increased bark to secondary xylem ratio (+47.0 %) due to interaction of ozone and water. Water deficit influenced occurrence of distinct growth ring boundaries in roots of Q. ilex and Q. robur. It shifted the ectomycorrhizal community towards dominance of stress-resistant species, with reduced relative abundance of Tomentella sp. 2 and increased relative abundances of Sphaerosporella brunnea and Thelephora sp. Our results provide evidence that expression of stress effects varies between root traits; therefore the combined analysis of root traits is necessary to obtain a complete picture of belowground responses.
Keywords: ozone, drought, fine roots, ectomycorrhiza, anatomy, morphology, plants
Published in DiRROS: 20.02.2020; Views: 2002; Downloads: 1310
.pdf Full text (1,03 MB)
This document has many files! More...

12.
Low growth resilience to drought is related to future mortality risk in trees
Lucía De Soto, Maxime Cailleret, Frank Sterck, Steven Jansen, Koen Kramer, Elisabeth M.R. Robert, Tuomas Aakala, Mariano M. Amoroso, Christof Bigler, Jesus Julio Camarero, Katarina Čufar, Tom Levanič, 2020, original scientific article

Abstract: Severe droughts have the potential to reduce forest productivity and trigger tree mortality. Most trees face several drought events during their life and therefore resilience to dry conditions might be crucial to long-term survival. We assess how growth resilience to severe droughts, including its components resistance and recovery, is related to the ability to survive future droughts by using a tree-ring database of surviving and now-dead trees from 118 sites (22 species, >3,500 trees). We find that, across the variety of regions and species sampled, trees that died during water shortages were less resilient to previous non-lethal droughts, relative to coexisting surviving trees of the same species. In angiosperms, drought-related mortality risk is associated with lower resistance (low capacity to reduce impact of the initial drought), while it is related to reduced recovery (low capacity to attain pre-drought growth rates) in gymnosperms. The different resilience strategies in these two taxonomic groups open new avenues to improve our understanding and prediction of drought-induced mortality. Resilience to drought is crucial for tree survival under climate change. Here, DeSoto et al. show that trees that died during drought were less resilient to previous dry events compared to surviving conspecifics, but the resilience strategies differ between angiosperms and gymnosperms.
Keywords: trees, mortality, gymnosperms, angiosperms, drought, resilience, resistance, recovery
Published in DiRROS: 20.02.2020; Views: 1739; Downloads: 1098
URL Link to full text

13.
Discrimination between abiotic and biotic drought stress in tomatoes using hyperspectral imaging
Nik Susič, Uroš Žibrat, Saša Širca, Polona Strajnar, Jaka Razinger, Matej Knapič, Andrej Vončina, Gregor Urek, Barbara Gerič Stare, original scientific article

Abstract: Crop plants are subjected to various biotic and abiotic stresses. Both root-knot nematodes (biotic stress) and water deficiency (abiotic stress) lead to similar drought symptoms in the plant canopy. In this work, hyperspectral imaging was used for early detection of nematode infestation and water deficiency (drought) stress in tomato plants. Hyperspectral data in the range from 400 to 2500 nm of plants subjected to different watering regimes and nematode infestation levels were analysed by partial least squares – discriminant analysis (PLS-DA) and partial least squares – support vector machine (PLS-SVM) classification. PLS-SVM classification achieved up to 100% accuracy differentiating between well-watered and water-deficient plants, and between 90 and 100% when identifying nematode-infested plants. Grouping the data according to the time of imaging increased the accuracy of classification. Shortwave infrared spectral regions associated with the OH and CH stretches were most relevant for the identification of nematode infested plants and severity of infestation. This study demonstrates the capability of hyperspectral imaging to identify and discriminate between biotic and abiotic plant stresses.
Keywords: nematode, Hyperspectral imaging, Drought stress, Root-knot nematode, Tomato
Published in DiRROS: 20.07.2018; Views: 3866; Downloads: 2383
.pdf Full text (847,87 KB)
This document has many files! More...

Search done in 0.05 sec.
Back to top