Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "keywords" (boundary conditions) .

1 - 2 / 2
First pagePrevious page1Next pageLast page
1.
An experimental apparatus for bench-scale fire testing using electrical heating pads
Aleksandra Seweryn, Andrea Lucherini, Jean-Marc Franssen, 2023, original scientific article

Abstract: This research study concerns an experimental, budget-friendly, electricity- powered apparatus for bench-scale fire testing. The apparatus consists of various elements, of which the most important are ceramic heating pads, used to impose heat fluxes on exposed surfaces of specimens. The test method allows to control the heating pads’ temperature and to adjust the distance between the heating pads and the specimen to obtain well-defined heat fluxes up to 50–60 kW/m2. Higher heat fluxes and temperatures can be obtained by setting the heating pads in full power mode, with or without the use of a thermal shield, which can lead to heat fluxes up to 150 kW/m2. The heating and thermal boundary conditions imposed by the apparatus are characterised and discussed, and the thickness of the convective boundary layer at the heating pads’ surface is estimated significantly lower than in the case of gas- fired radiant panels. The performance of the apparatus is analysed for various conditions: controlling the temperature of the heating pads, in an open environment or with the presence of thermal shields, and in full power mode. A few examples of application of the apparatus to fire test typical construction materials (steel and glass) are also presented. These results emphasise the well-defined heating conditions in temperature-controlled mode. The study finally discusses the advantages and limitations of the apparatus, as well as many possibilities of future applications and improvement for future research studies.
Keywords: radiant panels, fire testing, heat transfer, heat flux, electrical heating pads, thermal boundary conditions
Published in DiRROS: 15.04.2024; Views: 108; Downloads: 54
.pdf Full text (3,11 MB)
This document has many files! More...

2.
In-plane seismic behaviour of ashlar three-leaf stone masonry walls : verifying performance limits
Meta Kržan, Vlatko Bosiljkov, 2021, original scientific article

Abstract: In light of the forthcoming second generation Eurocodes (EC), the results of conducted systematic in-plane cyclic and compressive tests on three-leaf stone masonry walls are discussed following new requirements and provisions. The new proposal for EC8-3 for existing buildings is based on partial factors safety approach, though it considers different uncertainties in defining input parameters for effective seismic performance-based assessment. Prior to its application, massive calibration effort will be needed since there is no standardized method for shear testing of masonry walls. In this paper, the performance limit states damage, resistance, and displacement capacities from conducted test results were evaluated and assessed through comparison with analytical solutions and imposed limit values, as stated in existing codes. The test results provide a much higher deformation capacity than the limits provided in both existing and new proposal of EC8-3 as well as those in the ASCE code provisions. The reason for this lies in the soft, "ductile" mortar for which the presumed resistance according to code provisions should be significantly higher when considering good quality ashlar three-leaf stone masonry.
Keywords: historical masonry, multi-leaf stone masonry, mechanical properties, compression tests, in-plane shear tests, failure mechanisms, drift limits, boundary conditions
Published in DiRROS: 19.05.2023; Views: 323; Downloads: 163
.pdf Full text (4,47 MB)
This document has many files! More...

Search done in 0.05 sec.
Back to top