Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "keywords" (RNA sequencing) .

1 - 2 / 2
First pagePrevious page1Next pageLast page
1.
New approach for detection of normal alternative splicing events and aberrant spliceogenic transcripts with long-range PCR and deep RNA sequencing
Vita Šetrajčič Dragoš, Vida Stegel, Ana Blatnik, Gašper Klančar, Mateja Krajc, Srdjan Novaković, 2021, original scientific article

Abstract: RNA sequencing is a promising technique for detecting normal and aberrant RNA isoforms. Here, we present a new single-gene, straightforward 1-day hands-on protocol for detection of splicing alterations with deep RNA sequencing from blood. We have validated our method%s accuracy by detecting previously published normal splicing isoforms of STK11 gene. Additionally, the same technique was used to provide the first comprehensive catalogue of naturally occurring alternative splicing events of the NBN gene in blood. Furthermore, we demonstrate that our approach can be used for detection of splicing impairment caused by genetic variants. Therefore, we were able to reclassify three variants of uncertain significance: NBN:c.584G>A, STK11:c.863-5_863-3delCTC and STK11:c.615G>A. Due to the simplicity of our approach, it can be incorporated into any molecular diagnostics laboratory for determination of variant%s impact on splicing.
Keywords: RNA sequencing, DNA variant, splicing
Published in DiRROS: 21.09.2022; Views: 399; Downloads: 231
.pdf Full text (1,89 MB)
This document has many files! More...

2.
Identification of spliceogenic variants beyond canonical GT-AG splice sites in hereditary cancer genes
Vita Šetrajčič Dragoš, Ksenija Strojnik, Gašper Klančar, Petra Škerl, Vida Stegel, Ana Blatnik, Marta Banjac, Mateja Krajc, Srdjan Novaković, 2022, original scientific article

Abstract: Pathogenic/likely pathogenic variants in susceptibility genes that interrupt RNA splicing are a well-documented mechanism of hereditary cancer syndromes development. However, if RNA studies are not performed, most of the variants beyond the canonical GT-AG splice site are characterized as variants of uncertain significance (VUS). To decrease the VUS burden, we have bioinformatically evaluated all novel VUS detected in 732 consecutive patients tested in the routine genetic counseling process. Twelve VUS that were predicted to cause splicing defects were selected for mRNA analysis. Here, we report a functional characterization of 12 variants located beyond the first two intronic nucleotides using RNAseq in APC, ATM, FH, LZTR1, MSH6, PALB2, RAD51C, and TP53 genes. Based on the analysis of mRNA, we have successfully reclassified 50% of investigated variants. 25% of variants were downgraded to likely benign, whereas 25% were upgraded to likely pathogenic leading to improved clinical management of the patient and the family members.
Keywords: hereditary cancer, RNA sequencing, spliceogenic
Published in DiRROS: 07.09.2022; Views: 439; Downloads: 231
.pdf Full text (778,18 KB)
This document has many files! More...

Search done in 0.08 sec.
Back to top