1.
The Sierpiński product of graphsJurij Kovič,
Tomaž Pisanski,
Sara Sabrina Zemljič,
Arjana Žitnik, 2023, original scientific article
Abstract: In this paper we introduce a product-like operation that generalizes the construction of the generalized Sierpiński graphs. Let $G$, $H$ be graphs and let $f: V(G) \to V(H)$ be a function. Then the Sierpiński product of graphs $G$ and $H$ with respect to $f$, denoted by $G\otimes_f H$, is defined as the graph on the vertex set $V(G) \times V(H)$, consisting of $|V(G)|$ copies of $H$; for every edge $\{g, g'\}$ of $G$ there is an edge between copies $gH$ and $g'H$ of form $\{(g, f(g'), (g', f(g))\}$. Some basic properties of the Sierpiński product are presented. In particular, we show that the graph $G\otimes_f H$ is connected if and only if both graphs $G$ and $H$ are connected and we present some conditions that $G, \, H$ must fulfill for $G\otimes_f H$ to be planar. As for symmetry properties, we show which automorphisms of $G$ and $H$ extend to automorphisms of $G\otimes_f H$. In several cases we can also describe the whole automorphism group of the graph $G\otimes_f H$. Finally, we show how to extend the Sierpiński product to multiple factors in a natural way. By applying this operation $n$ times to the same graph we obtain an alternative approach to the well-known $n$-th generalized Sierpiński graph.
Keywords: Sierpiński graphs, graph products, connectivity, planarity, symmetry
Published in DiRROS: 19.03.2024; Views: 117; Downloads: 42
Full text (533,30 KB)
This document has many files! More...