Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in


Query: "author" (Boštjan Markelc) .

1 - 10 / 20
First pagePrevious page12Next pageLast page
Potentiation of electrochemotherapy effectiveness by immunostimulation with IL-12 gene electrotransfer in mice is dependent on tumor immune status
Katja Uršič Valentinuzzi, Špela Kos, Urška Kamenšek, Maja Čemažar, Simona Miceska, Boštjan Markelc, Simon Buček, Barbara Starešinič, Veronika Kloboves-Prevodnik, Richard Heller, Gregor Serša, 2021, original scientific article

Abstract: Electrochemotherapy (ECT) exhibits high therapeutic effectiveness in the clinic, achieving up to 80% local tumor control but without a systemic (abscopal) effect. Therefore, we designed a combination therapy consisting of ECT via intratumoral application of bleomycin, oxaliplatin or cisplatin with peritumoral gene electrotransfer of a plasmid encoding interleukin-12 (p. t. IL-12 GET). Our hypothesis was that p. t. IL-12 GET potentiates the effect of ECT on local and systemic levels and that the potentiation varies depending on tumor immune status. Therefore, the combination therapy was tested in three immunologically different murine tumor models. In poorly immunogenic B16F10 melanoma, IL-12 potentiated the antitumor effect of ECT with biologically equivalent low doses of cisplatin, oxaliplatin or bleomycin. The most pronounced potentiation was observed after ECT using cisplatin, resulting in a complete response rate of 38% and an abscopal effect. Compared to B16F10 melanoma, better responsiveness to ECT was observed in more immunogenic 4%T1 mammary carcinoma and CT26 colorectal carcinoma. In both models, p. t. IL-12 GET did not significantly improve the therapeutic outcome of ECT using any of the chemotherapeutic drugs. Collectively, the effectiveness of the combination therapy depends on tumor immune status. ECT was more effective in more immunogenic tumors, but GET exhibited greater contribution in less immunogenic tumors. Thus, the selection of the therapy, namely, either ECT alone or combination therapy with p. t. IL-12, should be predominantly based on tumor immune status.
Keywords: electrochemotherapy, gene electrotransfer, interleukin-12
Published in DiRROS: 21.09.2022; Views: 158; Downloads: 40
.pdf Full text (7,82 MB)

PARP inhibitor olaparib has a potential to increase the effectiveness of electrochemotherapy in BRCA1 mutated breast cancer in mice
Maša Bošnjak, Tanja Jesenko, Boštjan Markelc, Larisa Janžič, Maja Čemažar, Gregor Serša, 2021, original scientific article

Abstract: Electrochemotherapy (ECT), a local therapy, has different effectiveness among tumor types. In breast can-cer, its effectiveness is low; therefore, combined therapies are needed. The aim of our study was to com-bine ECT with PARP inhibitor olaparib, which could inhibit the repair of bleomycin or cisplatin inducedDNA damage and potentiate the effectiveness of ECT. The effects of combined therapy were studied inBRCA1mutated (HCC1937) and non-mutated (HCC1143) triple negative breast cancer cell lines.Therapeutic effectiveness was studied in 2D and 3D cell cultures andin vivoon subcutaneousHCC1937 tumor model in mice. The underlying mechanism of combined therapy was determined withthe evaluation ofcH2AX foci. Combined therapy of ECT with bleomycin and olaparib potentiated theeffectiveness of ECT inBRCA1mutated HCC1937, but not in non-mutated HCC1143 cells. The combinedtherapy had a synergistic effect, which was due to the increased number of DNA double strand breaks.Addition of olaparib to ECT with bleomycinin vivoin HCC1937 tumor model had only minimal effect,indicating repetitive olaparib treatment would be needed. This study demonstrates that DNA repar inhibiting drugs, like olaparib, have the potential to increase the effectiveness of ECT with bleomycin.
Keywords: electrochemotherapy, breast cancer, olaparib, bleomycin
Published in DiRROS: 21.09.2022; Views: 118; Downloads: 40
.pdf Full text (3,74 MB)

Mutational burden, MHC-I expression and immune infiltration as limiting factors for in situ vaccination by TNF[alfa] and IL-12 gene electrotransfer
Urška Kamenšek, Katja Uršič Valentinuzzi, Boštjan Markelc, Maja Čemažar, Vita Šetrajčič Dragoš, Gregor Serša, 2021, original scientific article

Abstract: In situ vaccination is a promising immunotherapeutic approach, where various local ablative therapies are used to induce an immune response against tumor antigens that are released from the therapy-killed tumor cells. We recently proposed using intratumoral gene electrotransfer for concomitant transfection of a cytotoxic cytokine tumor necrosis factor-% (TNF%) to induce in situ vaccination, and an immunostimulatory cytokine interleukin 12 (IL-12) to boost the primed immune response. Here, our aim was to test the local and systemic effectiveness of the approach in tree syngeneic mouse tumor models and associate it with tumor immune profiles, characterized by tumor mutational burden, immune infiltration and expression of PD-L1 and MHC-I on tumor cells. While none of the tested characteristic proved predictive for local effectiveness, high tumor mutational burden, immune infiltration and MHC-I expression were associated with higher abscopal effectiveness. Hence, we have confirmed that both the abundance and presentation of tumor antigens as well as the absence of immunosuppressive mechanisms are important for effective in situ vaccination. These findings provide important indications for future development of in situ vaccination based treatments, and for the selection of tumor types that will most likely benefit from it.
Keywords: in situ vaccination, gene electrotransfer, interleukin 12, tumor necrosis factor [alfa]
Published in DiRROS: 19.09.2022; Views: 130; Downloads: 38
.pdf Full text (1,78 MB)

Gene electrotransfer of proinflammatory chemokines CCL5 and CCL17 as a novel approach of modifying cytokine expression profile in the tumor microenvironment
Tim Božič, Gregor Serša, Simona Kranjc Brezar, Maja Čemažar, Boštjan Markelc, 2021, original scientific article

Abstract: The effectiveness of immunotherapy highly correlates with the degree and the type of infiltrated immune cells in the tumor tissue. Treatments based on modifying the immune cell infiltrate of the tumor microenvironment are thus gaining momentum. Therefore, the aim of our study was to investigate the effects of gene therapy with two proinflammatory chemokines CCL5 and CCL17 on inflammatory cytokine expression profile and immune cell infiltrate in two murine breast tumor models, 4T1 and E0771, and two murine colon tumor models, CT26 and MC38. In vitro, lipofection of plasmid DNA encoding CCL5 or CCL17 resulted in changes in the cytokine expression profile similar to control plasmid DNA, implying that the main driver of these changes was the entry of foreign DNA into the cell%s cytosol. In vivo, gene electrotransfer resulted in high expression levels of both Ccl5 and Ccl17 transgenes in the 4T1 and CT26 tumor models. Besides a minor increase in the survival of the treated mice, the therapy also resulted in increased expression of Cxcl9 and Ifn%, potent activators of the immune system, in CT26 tumors. However, this was not recapitulated in changes of TME, implying that a further refinement of the dosing schedule is needed.
Keywords: chemokines, cytokine expression, gene electrotransfer, CCL5
Published in DiRROS: 19.09.2022; Views: 118; Downloads: 38
.pdf Full text (5,63 MB)

Estimating quantitative physiological and morphological tissue parameters of murine tumor models using hyperspectral imaging and optical profilometry
Tadej Tomanič, Luka Rogelj, Jošt Stergar, Boštjan Markelc, Tim Božič, Simona Kranjc Brezar, Gregor Serša, Matija Milanič, 2022, original scientific article

Abstract: Understanding tumors and their micro-environment are essential for successfuland accurate disease diagnosis. Tissuephysiology and morphology are altered intumors compared to healthy tissues, andthere is a need to monitor tumors and their surrounding tissues, includingblood vessels, non-invasively. This preliminary study utilizes a multimodaloptical imaging system combining hyperspectral imaging (HSI) and three-dimensional (3D) optical profilometry (OP) to capture hyperspectral imagesand surface shapes of subcutaneously grown murine tumor models. Hyper-spectral images are corrected with 3D OP data and analyzed using the inverse-adding doubling (IAD) method to extract tissue properties such as melaninvolume fraction and oxygenation. Blood vessels are segmented using theB-COSFIRE algorithm from oxygenation maps. From 3D OP data, tumor vol-umes are calculated and compared to manual measurements using a verniercaliper. Results show that tumors can be distinguished from healthy tissuebased on most extracted tissue parameters (p<0:05). Furthermore, blood oxy-genation is 50% higher within the blood vessels than in the surrounding tissue,and tumor volumes calculated using 3D OP agree within 26% with manualmeasurements using a vernier caliper. Results suggest that combining HSI andOP could provide relevant quantitative information about tumors and improvethe disease diagnosis.
Keywords: medical physics, hyperspectral imaging, diffuse reflectance spectroscopy, blood vessels, tumors
Published in DiRROS: 08.09.2022; Views: 146; Downloads: 52
.pdf Full text (3,79 MB)

Non-clinical in vitro evaluation of antibiotic resistance gene-free plasmids encoding human or murine IL-12 intended for first-in-human clinical study
Špela Kos, Maša Bošnjak, Tanja Jesenko, Boštjan Markelc, Urška Kamenšek, Katarina Žnidar, Urška Matkovič, Andrej Renčelj, Gregor Serša, Rosana Hudej, Aneja Tuljak, Matjaž Peterka, Maja Čemažar, 2021, original scientific article

Abstract: Interleukin 12 (IL-12) is a key cytokine that mediates antitumor activity of immune cells. To fulfill its clinical potential, the development is focused on localized delivery systems, such as gene electrotransfer, which can provide localized delivery of IL-12 to the tumor microenvironment. Gene electrotransfer of the plasmid encoding human IL-12 is already in clinical trials in USA, demonstrating positive results in the treatment of melanoma patients. To comply with EU regulatory requirements for clinical application, which recommend the use of antibiotic resistance gene-free plasmids, we constructed and developed the production process for the clinical grade quality antibiotic resistance gene-free plasmid encoding human IL-12 (p21-hIL-12-ORT) and its ortholog encoding murine IL-12 (p21-mIL-12-ORT). To demonstrate the suitability of the p21-hIL-12-ORT or p21-mIL-12-ORT plasmid for the first-in-human clinical trial, the biological activity of the expressed transgene, its level of expression and plasmid copy number were determined in vitro in the human squamous cell carcinoma cell line FaDu and the murine colon carcinoma cell line CT26. The results of the non-clinical evaluation in vitro set the basis for further in vivo testing and evaluation of antitumor activity of therapeutic molecules in murine models as well as provide crucial data for further clinical trials of the constructed antibiotic resistance gene-free plasmid in humans.
Keywords: interleukin 12, gene electrotransfer, antibiotic resistance, plasmids
Published in DiRROS: 07.09.2022; Views: 111; Downloads: 65
.pdf Full text (4,73 MB)
This document has many files! More...

In vitro and in vivo correlation of skin and cellular responses to nucleic acid delivery
Maša Bošnjak, Katarina Žnidar, A. Sales Conniff, Tanja Jesenko, Boštjan Markelc, Jared Tur, Nina Semenova, Kristopher Kohena, Simona Kranjc Brezar, Loree C. Heller, Maja Čemažar, 2022, original scientific article

Abstract: Skin, the largest organ in the body, provides a passive physical barrier against infection and contains elements of the innate and adaptive immune systems. Skin consists of various cells, including keratinocytes, fibroblasts, endothelial cells and immune cells. This diversity of cell types could be important to gene therapies because DNA transfection could elicit different responses in different cell types. Previously, we observed the upregulation and activation of cytosolic DNA sensing pathways in several non-tumor and tumor cell types as well in tumors after the electroporation (electrotransfer) of plasmid DNA (pDNA). Based on this research and the innate immuno- genicity of skin, we correlated the effects of pDNA electrotransfer to fibroblasts and keratinocytes to mouse skin using reverse transcription real-time PCR (RT-qPCR) and several types of protein quantification. After pDNA electrotransfer, the mRNAs of the putative DNA sensors DEAD (AspGlu-Ala-Asp) box polypeptide 60 (Ddx60), absent in melanoma 2 (Aim2), Z-DNA binding protein 1 (Zbp1), interferon activated gene 202 (Ifi202), and interferon-inducible protein 204 (Ifi204) were upregulated in keratinocytes, while Ddx60, Zbp1 and Ifi204 were upregulated in fibroblasts. Increased levels of the mRNAs and proteins of several cytokines and chemokines were detected and varied based on cell type. Mouse skin experiments in vivo confirmed our in vitro results with increased expression of putative DNA sensor mRNAs and of the mRNAs and proteins of several cytokines and chemokines.
Keywords: DNA sensors, cytokines, electrotransfer, skin
Published in DiRROS: 06.09.2022; Views: 121; Downloads: 78
.pdf Full text (7,72 MB)
This document has many files! More...

Genska terapija v onkologiji, prvi razvojni koraki v Sloveniji
Maja Čemažar, Tanja Jesenko, Maša Bošnjak, Boštjan Markelc, Urška Kamenšek, Simona Kranjc Brezar, Špela Kos, Urša Lampreht Tratar, Katarina Žnidar, Andrej Renčelj, Urška Matkovič, Teja Valant, Kristina Levpušček, Živa Modic, Tilen Komel, Tim Božič, Urša Kešar, Barbara Starešinič, Katja Uršič Valentinuzzi, Monika Savarin, Primož Strojan, Gorana Gašljević, Maja Ota, Aleš Grošelj, Črt Jamšek, Rosana Hudej, Matjaž Peterka, Franc Smrekar, Barbara Hubad, Marjan Hosta, Jaka Kužnik, Alojz Hosta, Damijan Miklavčič, Matej Reberšek, Aleksandra Cvetkoska, Anja Zajc, Janja Dermol-Černe, Nataša Tozon, Nina Milevoj, Alenka Nemec Svete, Gregor Serša, 2022, professional article

Abstract: Genska terapija postaja čedalje bolj zanimiva tudi v onkologiji. Med aplikacijami je morda najzanimivejša imunostimulacija. Pripravimo lahko plazmidno DNA, ki nosi zapis za različne imunostimulatorne molekule, ki jih vnesemo v celice tumorjev ali normalnih tkiv. Ta tkiva postanejo proizvajalci teh molekul, ki lahko delujejo lokalno ali pa se izločajo tudi sistemsko v krvni obtok. Ker plazmidna DNA ne prehaja celične membrane, so potrebni dostavni sistemi, virusni ali nevirusni. V naših študijah uporabljamo predvsem nevirusni dostavni sistem – elektroporacijo. Interlevkin 12 (IL-12) je eden od zanimivih citokinov, za katerega je znano protitumorsko delovanje s spodbujanjem imunskega odziva in antiangiogenim delovanjem. Namen projekta je bil pripraviti plazmid z zapisom za interlevkin 12 (plazmid phIL12) in pripraviti vse potrebno za njegovo klinično testiranje za zdravljenje kožnih tumorjev. V konzorciju smo združili moči s partnerji z akademskega in industrijskega področja. Treba je bilo pripraviti plazmid za uporabo v humani onkologiji po zahtevah Evropske agencije za zdravila (EMA). Za prijavo klinične študije na Javno agencijo za zdravila in medicinske pripomočke (JAZMP) smo morali izvesti tudi vse neklinične raziskave o varnosti in učinkovitosti zdravila. Nato je bilo treba razviti postopek priprave zdravila, zagotoviti primerne prostore za pripravo in izvedbo postopka priprave zdravila. V treh letih smo dosegli vse te zastavljene cilje in dobili dovoljenje za izvajanje klinične študije na kožnih tumorjih, ki ga je izdala JAZMP na osnovi pozitivnega mnenja Komisije Republike Slovenije za medicinsko etiko. Zdaj poteka klinična študija faze I preizkušanja plazmida phIL12 na kožnih tumorjih glave in vratu z namenom preveriti varnost in sprejemljivost genskega elektroprenosa plazmida v tumorje. Cilj študije je prav tako določiti primeren odmerek zdravila, ki bi ga v nadaljnji klinični študiji uporabili kot adjuvantno zdravljenje k ablativnim terapijam, kot sta radioterapija ali elektrokemoterapija.
Keywords: genska terapija, interlevkin-12, plazmidna DNA, elektroprenos genov, rak kože
Published in DiRROS: 01.07.2022; Views: 348; Downloads: 86
.pdf Full text (420,40 KB)

Search done in 0.64 sec.
Back to top