Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "author" (Blaž Karpe) .

1 - 2 / 2
First pagePrevious page1Next pageLast page
1.
Effect of heat treatment on thermal conductivity of additively manufactured AISI H13 tool steel
Samo Tome, Blaž Karpe, Irena Paulin, Matjaž Godec, 2024, published scientific conference contribution

Abstract: AISI H13 is commonly used for tooling, where higher wear resistance, thermal fatigue resistance, or hot toughness is required. Such examples include forging dies, plastic molds, hot shear blades, high-pressure die casting, and extrusion dies. Thus, thermal conductivity is one of the most important factors for hot work tools. Typically, the work cycle of a hot work tool designed for forging consists of four main phases: the forging stroke, with which the die imparts its shape onto the part, a brief pause while the die is reset to its original position, a lubrication phase, and a post lubrication dwell phase. During the forging phase, a significant amount of heat is transferred to the die while it is in contact with the part. This heat must then be dispelled for the part to return to a working temperature. While somewhat different, other hot work processes mentioned above are similar in that the hot work tool gets heated to a high temperature due to the contact with the object of deformation. The process of additive manufacturing (AM) promises better, more efficient tool production with features like conforming cooling channels, which would reduce the thermal fatigue of tools, prolonging tool life. However, the powder bed fusion (PBF) method creates a columnar microstructure, which has a detrimental effect on the thermal conductivity of H13 tool steel. Our investigation focused on the beneficial effect of heat treatment, specifically annealing at different temperatures, on the thermal conductivity of AM-produced H13 parts.
Keywords: SLM, thermal conductivity, tool steel, heat treatment
Published in DiRROS: 28.02.2024; Views: 128; Downloads: 71
.pdf Full text (655,96 KB)
This document has many files! More...

2.
Corrosion properties of aluminized 16Mo3 steel
Blaž Karpe, Klara Prijatelj, Milan Bizjak, Tadeja Kosec, 2023, original scientific article

Abstract: Chromium-molybdenum steel (16Mo3) is widely used in petroleum, gas, automotive, and construction industries due to its good oxidation resistance and mechanical properties at moderately elevated temperatures. The aim of the research was to evaluate the corrosion susceptibility of 16Mo3 steel in hot rolled and aluminized states. Aluminization was performed by diffusion pack aluminization process at 900°C/2h and 730°C/4h, respectively. Electrochemical corrosion testing included measuring open circuit potential (EOCP), linear polarization resistance (LPR), potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) in potassium phosphate buffer (KH2PO4, pH = 7). Optical microscopy (OM), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS) were used for surface layer microstructure characterization before and after corrosion tests. It was demonstrated that corrosion resistance of aluminized steel increased substantially. Corrosion properties were related to the structure and properties of intermetallic phase (FeAl, FeAl2 and Fe2Al5) that formed on the surface of 16Mo3 steel.
Keywords: aluminide coatings, aluminized steel, aluminizing, electrochemical corrosion investigation, 16Mo3 steel
Published in DiRROS: 16.11.2023; Views: 332; Downloads: 173
.pdf Full text (4,40 MB)
This document has many files! More...

Search done in 0.12 sec.
Back to top