Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "author" (Abhilash Krishnamurthy) .

1 - 1 / 1
First pagePrevious page1Next pageLast page
1.
IoT electrochemical sensor with integrated ▫$Ni(OH)_2–Ni$▫ nanowires for detecting formaldehyde in tap water
Špela Trafela, Abhilash Krishnamurthy, Kristina Žagar, Urška Kavčič, Igor Karlovits, Beno Klopčič, Sašo Šturm, Kristina Žužek Rožman, 2023, original scientific article

Abstract: Simple, low-cost methods for sensing volatile organic compounds that leave no trace and do not have a detrimental effect on the environment are able to protect communities from the impacts of contaminants in water supplies. This paper reports the development of a portable, autonomous, Internet of Things (IoT) electrochemical sensor for detecting formaldehyde in tap water. The sensor is assembled from electronics, i.e., a custom-designed sensor platform and developed HCHO detection system based on Ni(OH)2–Ni nanowires (NWs) and synthetic-paper-based, screen-printed electrodes (pSPEs). The sensor platform, consisting of the IoT technology, a Wi-Fi communication system, and a miniaturized potentiostat can be easily connected to the Ni(OH)2–Ni NWs and pSPEs via a three-terminal electrode. The custom-made sensor, which has a detection capability of 0.8 µM/24 ppb, was tested for an amperometric determination of the HCHO in deionized (DI) and tap-water-based alkaline electrolytes. This promising concept of an electrochemical IoT sensor that is easy to operate, rapid, and affordable (it is considerably cheaper than any lab-grade potentiostat) could lead to the straightforward detection of HCHO in tap water.
Keywords: formaldehyde, electrochemical sensor, nickel, tap water
Published in DiRROS: 06.06.2023; Views: 367; Downloads: 157
.pdf Full text (2,65 MB)
This document has many files! More...

Search done in 0.05 sec.
Back to top