Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "keywords" (urban geochemistry) .

1 - 2 / 2
First pagePrevious page1Next pageLast page
1.
Oral bioaccessibility of potentially toxic elements in various environmental media
Martin Gaberšek, Mateja Gosar, 2024, original scientific article

Abstract: An important aspect of geochemical studies is determining health hazard of potentially toxic elements (PTEs). Key information on PTEs behaviour in the human body in case of their ingestion is provided with the use of in vitro bioaccessibility tests. We analysed and compared oral bioaccessibility of a wide range of PTEs (As, Cd, Ce, Cr, Cu, Hg, La, Li, Ni, Pb, Sb, Sn, Zn), including some that are not often studied but might pose a human health hazard, in soil, attic dust, street dust, and household dust, using Unified BARGE Method (UBM). Additionally, feasibility of usage of scanning electron microscope techniques in analyses of solid residuals of UBM phases was tested. Results show that bioaccessible fractions (BAFs) of PTEs vary significantly between individual samples of the same medium, between different media and between the gastric and gastro-intestinal phases. In soil, attic dust and street dust, bioaccessibility of individual PTE is mostly higher in gastric than in gastro-intestinal phase. The opposite is true for PTEs in household dust. In all four media, with the exception of Pb in household dust, among the most bioaccessible PTEs in gastric phase are Cd, Cu, Pb, and Zn. During the transition from the stomach to small intestine, the mean BAFs of most elements in soil, attic dust, and street dust decreases. The most bioaccessible PTEs in gastro-intestinal phase are Cu, Cd, Ni, and As. Micromorphological and chemical characterisation at individual particle level before and after bioaccessibility test contribute significantly to the understanding of oral bioaccessibility.
Keywords: urban geochemistry, UBM, soil, attic dust, street dust, household dust
Published in DiRROS: 10.07.2024; Views: 53; Downloads: 14
.pdf Full text (2,95 MB)

2.
Attic dust: an archive of historical air contamination of the urban environment and potential hazard to health?
Martin Gaberšek, Michael J. Watts, Mateja Gosar, 2022, original scientific article

Abstract: A comprehensive study of attic dust in an urban area is presented. Its entire life cycle, from determining historical emission sources to recognising the processes that take place in attic dust and its potential to impact human health is discussed. Its chemical composition and morphological characteristics of individual solid particles reflect past anthropogenic activities. High levels of Be-Cd-Cu-Sb-Sn-Pb-Te-Zn and occurrence of Cu-Zn shavings are typical for an industrial zone characterised by a foundry and a battery factory. High levels of Co-Fe-Mo-Ni-W-Ba-Cr-Mg-Mn-Nb-Ti and occurrence of various solid Fe-oxides, particularly spherical particles, were identified in another industrial zone, which was dominated by the automotive and metal-processing industries. Emissions from coal combustion affected the distribution of S-Se-Hg-Tl-As-Ag-U. The predominant mineral in attic dust is gypsum, which was presumably formed in situ by the reaction of carbonate dust particles and atmospheric SO2 gas. The high oral bioaccessibility of As-Cd-Cu-Pb-Zn in the gastric phase and high bioaccessibility of As-Cu-Cd-Ni in the gastrointestinal phase were identified. Determined characteristics of attic dust and identified possibilities of prolonged human exposure to it indicate that attic dust should be treated as an excellent proxy for historical air contamination as well as a potentially hazardous material for human health.
Keywords: multi-element composition, scanning electron microscopy, oral bioaccessibility, unified BARGE method, urban geochemistry
Published in DiRROS: 23.06.2022; Views: 714; Downloads: 258
.pdf Full text (1,39 MB)

Search done in 0.31 sec.
Back to top