Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "keywords" (steel) .

11 - 20 / 63
First pagePrevious page1234567Next pageLast page
11.
The effect of heat treatment on the interface of 155 PH martensitic stainless steel and SAF 2507 duplex steel in functionally graded AM components
Martina Koukolíková, Pavel Podaný, Sylwia Rzepa, Michal Brázda, Aleksandra Kocijan, 2023, original scientific article

Abstract: Multi-material components, also known as functionally graded materials (FGMs), are innovative materials that possess unique properties due to their composition and have many potential applications in engineering and science. The effect of the heat treatment (HT) of functionally graded materials 15–5 precipitation-hardened (PH) martensitic steel and SAF 2507 duplex stainless steel (and the opposite order of deposition, i.e. SAF 2507 first followed by 15–5 PH stainless steel) on the interface microstructures was systematically investigated in the presented research. The choice of HT followed the trend of optimum post-processing for the individual alloys. A significant modification in the interface microstructure, characterized in the microstructural transition zone (MTZ) formed above the fusion line. Mechanical properties by miniaturized testing method including hardness measurement characterized both types of interfaces. The sequence of the materials’ application did not have a significant effect on their final mechanical tensile properties in the heat-treated states. Nevertheless, the microstructural change at the MTZ led to drop in the hardness at the interface. The research presents heat-treated FGMs in a horizontal configuration to form a high-quality metallurgical joint between heterogeneous materials manufactured by powder-based directed energy deposition method.
Keywords: heat treatment, additive manufacturing, martensitic stainless steel, duplex steel, microstructure, mechanical properties
Published in DiRROS: 04.04.2024; Views: 221; Downloads: 45
URL Link to file

12.
13.
14.
Numerical modelling of macrosegregation in three-dimensional continuous casting of steel billets
Katarina Mramor, Robert Vertnik, Božidar Šarler, 2023, published scientific conference contribution

Abstract: Macrosegregation presents a considerable defect in the continuous casting of billets and can critically affect the final properties of the product. The numerical modelling can help to predict and better understand the segregation and flow patterns inside the mould. The process is modelled with a physical model described by a set of conservation equations describing the t heat transfer, turbulence, fluid flow, solidification and segregation. A two-equation low-Re k-epsilon model and Abe-Kondoh-Nagano closures are used to close governing equations in this incompressible fluid flow example. The Boussinesq approximation is applied to account for the thermo-solutal buoyancy effects, and the Darcy approximation is applied for the description of the flow through the porous mushy zone. On a microscale, a lever rule solidification model is used to couple liquid fraction, temperature and concentration. The three-dimensional model is solved with the method based on local collocation with multiquadric radial basis functions on seven-nodded subdomains. The aim of this contribution is to explore the three-dimensional macrosegregation patterns of 0.51 wt% carbon steel in the solidified shell of the steel in the mould.
Keywords: modeling, continuous casting of steel, CFD, turbulence modeling, LES, meshless methods, RANS
Published in DiRROS: 21.03.2024; Views: 172; Downloads: 107
.pdf Full text (1,48 MB)
This document has many files! More...

15.
A meshless numerical solution of thermo-mechanics of hot-rolled steel bars on a cooling bed
Gašper Vuga, Boštjan Mavrič, Umut Hanoglu, Božidar Šarler, 2023, published scientific conference contribution

Abstract: After the continuous hot-rolling process, steel bars are immediately placed on the cooling bed. At the beginning of the cooling, the material is at high temperatures, and the yield strength is low. Due to thermal load, yield strength can be exceeded, and permanent plastic strains start accumulating, resulting in possible unwanted shape changes and residual stresses. The present paper aims to develop a thermo-mechanical model for studying and eliminating undesirable phenomena before the products leave the cooling bed. The governing equations are solved for the two-dimensional slice in a strong form, and a modified version of the radial basis function generated finite difference (RBF-FD) method [1]. The initial bar geometry is obtained from the existing meshless hot-rolling simulation system [2]. The thermal and mechanical models are one-way coupled, i.e. the temperature solution represents a driving force for the stress and strain solution. The temperature field is obtained with explicit propagation in time. The convective and radiative heat fluxes on the boundary are updated at each time step using the ray tracing procedure to determine the radiative heat flux. The mechanical part is solved by considering the small strain elasto-plasticity, where the isotropic von Mises temperature-dependent hardening is employed. The global system of nonlinear equations of the mechanical part is solved by the Newton-Raphson method. The closest point projection method is used to solve the constitutive relations. A sensitivity study is performed on the influence of cooling intensity on a rectangular steel bar’s temperature, stress and strain field. We defined the most influential factors for defect formation. For the first time, a novel meshless RBF-FD method is successfully used for solving such a complex industrial problem. The model will be perspectively upgraded from the slice to the three-dimensional model to enable also bending.
Keywords: cooling bed, steel bars, thermo-mechanics, strong form, meshless method
Published in DiRROS: 21.03.2024; Views: 156; Downloads: 83
.pdf Full text (1,62 MB)
This document has many files! More...

16.
17.
Sustainable and strategic soft-magnetic Fe-Si-Al alloys produced by secondary metallurgy
Darja Steiner Petrovič, 2023, original scientific article

Keywords: silicon steel, secondary metallurgy, impurities, copper, magnetic losses, EU Green Deal
Published in DiRROS: 08.03.2024; Views: 389; Downloads: 460
.pdf Full text (957,03 KB)
This document has many files! More...

18.
Dry-sliding wear resistance of AISI H11-type hot-work tool steel
Gašper Puš, Borut Žužek, Agnieszka Guštin, Bojan Podgornik, 2023, original scientific article

Keywords: hot-work tool steel, friction, sliding wear, mechanical properties
Published in DiRROS: 08.03.2024; Views: 204; Downloads: 122
.pdf Full text (2,04 MB)
This document has many files! More...

19.
20.
Ladle melt treatment of high sulfur stainless steels
Jaka Burja, 2024, published scientific conference contribution

Abstract: The influence of sulfur on both slag and melt is very important in steelmaking. This is especially true for highsulfur machining steels. Machinability is achieved by alloying high sulfur contents, above 300 ppm. These are steels that form small chips and shavings during mechanical processing by cutting, which is more appropriate and favorable for both the workpiece and the processing tool and machine. However, the secondary steelmaking slag is typically designed for desulfurization. This means that the sulfur content rapidly falls after sulfur additions. This is especially true for high machinability stainless steel grades where S contents can exceed 1000 ppm. This causes the sulfur wire yield to vary greatly in each charge, making the process unreliable. Some aspects of understanding the interaction between the steel melt and slag and the effect on casting are presented in this work. Based on industrial charges, we analyzed the yield of sulfur additions and the influencing factors on the efficiency of the sulfur addition. The lower slag basicity was linked to lover sulfur distribution rations, and lover sulfur distribution rations were linked to higher sulfur yields. Melt and slag samples were analyzed. Slag entrapment during ingot casting was linked to the high sulfur contents.
Keywords: desulfurization, sulfur, stainless steel, steelmaking
Published in DiRROS: 28.02.2024; Views: 239; Downloads: 88
.pdf Full text (526,82 KB)
This document has many files! More...

Search done in 0.34 sec.
Back to top